Skip to main content
Log in

Entanglement generation outside a Schwarzschild black hole and the Hawking effect

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We examine the Hawking effect by studying the asymptotic entanglement of two mutually independent two-level atoms placed at a fixed radial distance outside a Schwarzschild black hole in the framework of open quantum systems. We treat the two-atom system as an open quantum system in a bath of fluctuating quantized massless scalar fields in vacuum and calculate the concurrence, a measurement of entanglement, of the equilibrium state of the system at large times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find, for all three vacuum cases, that the atoms turn out to be entangled even if they are initially in a separable state as long as the system is not placed right at the even horizon. Remarkably, only in the Unruh vacuum, will the asymptotic entanglement be affected by the backscattering of the thermal radiation off the space-time curvature. The effect of the back scatterings on the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [SPIRES].

    Article  ADS  Google Scholar 

  2. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  3. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  4. M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  6. A.W. Peet, TASI lectures on black holes in string theory, hep-th/0008241 [SPIRES].

  7. S.P. Robinson and F. Wilczek, A relationship between Hawking radiation and gravitational anomalies, Phys. Rev. Lett. 95 (2005) 011303 [gr-qc/0502074] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Iso, H. Umetsu and F. Wilczek, Hawking radiation from charged black holes via gauge and gravitational anomalies, Phys. Rev. Lett. 96 (2006) 151302 [hep-th/0602146] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Deser and O. Levin, Mapping Hawking into Unruh thermal properties, Phys. Rev. D 59 (1999) 064004 [hep-th/9809159] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  10. H.W. Yu and W. Zhou, Relationship between Hawking radiation from black holes and spontaneous excitation of atoms, Phys. Rev. D 76 (2007) 027503 [arXiv:0706.2207] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  11. H.W. Yu and W. Zhou, Do static atoms outside a Schwarzschild black hole spontaneously excite?, Phys. Rev. D 76 (2007) 044023 [arXiv:0707.2613] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. W. Zhou and H.W. Yu, Lamb shift for static atoms outside a Schwarzschild black hole, Phys. Rev. D 82 (2010) 104030 [arXiv:1011.1619] [SPIRES].

    ADS  Google Scholar 

  13. H.W. Yu and J. Zhang, Understanding Hawking radiation in the framework of open quantum systems, Phys. Rev. D 77 (2008) 024031 [Erratum ibid. D 77 (2008) 029904] [arXiv:0806.3602] [SPIRES].

    ADS  Google Scholar 

  14. H.W. Yu and J. Zhang, Hawking radiation and thermalization phenomena in open quantum systems, in Proceedings of the Ninth Asia-Pacific International Conference on Gravitation and Astrophysics, Wuhan, China, 2009, J. Luo et al. eds., World Scientific Publishing, Singapore (2010), pg. 319.

    Chapter  Google Scholar 

  15. F. Benatti and R. Floreanini, Entanglement generation in uniformly accelerating atoms: reexamination of the Unruh effect, Phys. Rev. A 70 (2004) 012112.

    ADS  Google Scholar 

  16. H.W. Yu, Open quantum system approach to Gibbons-Hawking effect of de Sitter space-time, Phys. Rev. Lett. 106 (2011) 061101 [arXiv:1101.5235] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Braun, Creation of entanglement by interaction with a common heat bath, Phys. Rev. Lett. 89 (2002) 277901 [SPIRES].

    Article  ADS  Google Scholar 

  18. M.S. Kim, J. Lee, D. Ahn and P.L. Knight, Entanglement induced by a single-mode heat environment, Phys. Rev. A 65 (2002) 040101(R) [quant-ph/0109052].

    ADS  Google Scholar 

  19. L. Jakóbczyk, Entangling two qubits by dissipation, J. Phys. A 35 (2002) 6383.

    ADS  Google Scholar 

  20. S. Schneider and G.J. Milburn, Entanglement in the steady state of a collective-angular-momentum (Dicke) model, Phys. Rev. A 65 (2002) 042107.

    ADS  Google Scholar 

  21. F. Benatti, R. Floreanini and M. Piani, Environment induced entanglement in Markovian dissipative dynamics, Phys. Rev. Lett. 91 (2003) 070402 [quant-ph/0307052].

    Article  ADS  Google Scholar 

  22. A.M. Basharov, Decoherence and entanglement in radiative decay of a diatomic system, J. Exp. Theor. Phys. 94 (2002) 1070 [Zh. Eksp. Teor. Fiz. 121 (2002) 1249].

    Article  ADS  Google Scholar 

  23. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [SPIRES].

    ADS  Google Scholar 

  24. J.B. Hartle and S.W. Hawking, Path integral derivation of black hole radiance, Phys. Rev. D 13 (1976) 2188 [SPIRES].

    ADS  Google Scholar 

  25. D.G. Boulware, Quantum Field Theory in Schwarzschild and Rindler spaces, Phys. Rev. D 11 (1975) 1404 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. F. Benatti and R. Floreanini, Controlling entanglement generation in external quantum fields, J. Opt. B7 (2005) S429 [quant-ph/0508150].

    ADS  Google Scholar 

  27. V. Gorini, A. Kossakowski and E.C.G. Sudarshan, Completely positive dynamical semigroups of N level systems, J. Math. Phys. 17 (1976) 821 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48 (1976) 119 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. B.S. De Witt, Quantum Field Theory in curved space-time, Phys. Rept. 19 (1975) 295 [SPIRES].

    Article  ADS  Google Scholar 

  30. S.M. Christensen and S.A. Fulling, Trace anomalies and the Hawking effect, Phys. Rev. D 15 (1977) 2088 [SPIRES].

    ADS  Google Scholar 

  31. P. Candelas, Vacuum polarization in Schwarzschild space-time, Phys. Rev. D 21 (1980) 2185 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  32. J. Zhang and H.W. Yu, Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary, Phys. Rev. A 75 (2007) 012101 [quant-ph/0611170] [SPIRES].

    ADS  Google Scholar 

  33. J. Zhang and H.W. Yu, The Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary, Phys. Rev. D 75 (2007) 104014 [arXiv:0705.1092] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Yu, H. Entanglement generation outside a Schwarzschild black hole and the Hawking effect. J. High Energ. Phys. 2011, 137 (2011). https://doi.org/10.1007/JHEP08(2011)137

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)137

Keywords

Navigation