Skip to main content
Log in

Theoretical constraints on the couplings of non-exotic minimal Z′ bosons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We have combined perturbative unitarity and renormalisation group equation arguments in order to find a dynamical way to constrain the space of the gauge couplings of the so-called “Minimal Z′ Models”. We have analysed the role of the gauge couplings evolution in the perturbative stability of the two-to-two body scattering amplitudes of the vector and scalar sectors of these models and we have shown that perturbative unitarity imposes an upper bound that is generally stronger than the triviality constraint. We have also demonstrated how this method quantitatively refines the usual triviality bound in the case of benchmark scenarios such as the U(1) χ , the U(1) R or the “pure” U(1) BL extension of the Standard Model. Finally, a description of the underlying model structure in Feynman gauge is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.G. Rizzo, Extended gauge sectors at future colliders: report of the new gauge boson subgroup, hep-ph/9612440 [SPIRES].

  2. M. Cvetič and P. Langacker, Z’ physics and supersymmetry, hep-ph/9707451 [SPIRES].

  3. A. Leike, The phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143 [hep-ph/9805494] [SPIRES].

    Article  ADS  Google Scholar 

  4. M.S. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z-prime gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [SPIRES].

    ADS  Google Scholar 

  5. T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [SPIRES].

    ADS  Google Scholar 

  6. P.H. Chankowski, S. Pokorski and J. Wagner, Z’ and the Appelquist-Carrazzone decoupling, Eur. Phys. J. C 47 (2006) 187 [hep-ph/0601097] [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Ferroglia, A. Lorca and J.J. van der Bij, The Z-prime reconsidered, Annalen Phys. 16 (2007) 563 [hep-ph/0611174] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  8. P. Langacker, The physics of heavy Z-prime gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [SPIRES].

    Article  ADS  Google Scholar 

  9. J. Erler, P. Langacker, S. Munir and E.R. Pena, Improved constraints on Z’ bosons from electroweak precision data, JHEP 08 (2009) 017 [arXiv:0906.2435] [SPIRES].

    Article  ADS  Google Scholar 

  10. E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z’ models: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [SPIRES].

    Article  ADS  Google Scholar 

  11. A.D. Linde, Dynamical symmetry restoration and constraints on masses and coupling constants in gauge theories, JETP Lett. 23 (1976) 64 [SPIRES].

    ADS  Google Scholar 

  12. A.D. Linde, Symmetry behavior in external fields, Phys. Lett. B 62 (1976) 435 [SPIRES].

    ADS  Google Scholar 

  13. S. Weinberg, Mass of the Higgs boson, Phys. Rev. Lett. 36 (1976) 294 [SPIRES].

    Article  ADS  Google Scholar 

  14. K.G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior, Phys. Rev. B4 (1971) 3184 [SPIRES].

    ADS  Google Scholar 

  15. K.G. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [SPIRES].

    Article  ADS  Google Scholar 

  16. B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [SPIRES].

    ADS  Google Scholar 

  17. L. Basso, S. Moretti and G.M. Pruna, A renormalisation group equation study of the scalar sector of the minimal B-L extension of the standard model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [SPIRES].

    ADS  Google Scholar 

  18. L. Basso, A. Belyaev, S. Moretti and G.M. Pruna, Tree level unitarity bounds for the minimal B-L model, Phys. Rev. D 81 (2010) 095018 [arXiv:1002.1939] [SPIRES].

    ADS  Google Scholar 

  19. E.E. Jenkins, Searching for a B-L gauge boson in \( p\bar{p} \) collisions, Phys. Lett. B 192 (1987) 219 [SPIRES].

    ADS  Google Scholar 

  20. W. Buchmüller, C. Greub and P. Minkowski, Neutrino masses, neutral vector bosons and the scale of B-L breaking, Phys. Lett. B 267 (1991) 395 [SPIRES].

    ADS  Google Scholar 

  21. C. Becchi, A. Rouet and R. Stora, Renormalization of gauge theories, Annals Phys. 98 (1976) 287 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [SPIRES].

    Article  ADS  Google Scholar 

  23. L. Basso, A minimal extension of the standard model with B-L gauge symmetry, M. Sc. Thesis, Università degli Studi di Padova, Padov Italy (2007) [http://www.hep.phys.soton.ac.uk/∼l.basso/B-L_Master_Thesis.pdf].

  24. M. Lüscher and P. Weisz, Application of the linked cluster expansion to the N component ϕ 4 theory, Nucl. Phys. B 300 (1988) 325 [SPIRES].

    Article  ADS  Google Scholar 

  25. S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [SPIRES].

    ADS  Google Scholar 

  26. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  27. G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [SPIRES].

    ADS  Google Scholar 

  28. L. Basso, S. Moretti and G.M. Pruna, Constraining the g 1 coupling in the minimal B − L Model, arXiv:1009.4164 [SPIRES].

  29. A.V. Semenov, LanHEP: A package for automatic generation of Feynman rules in gauge models, hep-ph/9608488 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Marco Pruna.

Additional information

ArXiv ePrint: 1106.4762

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basso, L., Moretti, S. & Pruna, G.M. Theoretical constraints on the couplings of non-exotic minimal Z′ bosons. J. High Energ. Phys. 2011, 122 (2011). https://doi.org/10.1007/JHEP08(2011)122

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)122

Keywords

Navigation