Skip to main content
Log in

Confinement, brane symmetry and the Julia-Toulouse approach for condensation of defects

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work the phenomenon of charge confinement is approached in various contexts. An universal criterion for the identification of this phenomenon in Abelian gauge theories is suggested: the so-called spontaneous breaking of the brane symmetry. This local symmetry has its most common manifestation in the Dirac string ambiguity present in the electromagnetic theory with monopoles. The spontaneous breaking of the brane symmetry means that the Dirac string becomes part of a brane invariant observable which hides the realization of such a symmetry and develops energy content in the confinement regime. The establishment of this regime can be reached through the condensation of topological defects. The effective theory of the confinement regime can be obtained with the Julia-Toulouse prescription which (originally introduced as the dual mechanism to the Abelian Higgs Mechanism) is generalized in this paper in order to become fully compatible with Elitzur’s theorem and describe more general condensates which may break Lorentz and discrete spacetime symmetries. This generalized approach for the condensation of defects is presented here through a series of different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, Quantised singularities in the electromagnetic field, Proc. Roy. Soc. A 133 (1931) 60.

    ADS  Google Scholar 

  2. P.A.M. Dirac, The theory of magnetic poles, Phys. Rev. 74 (1948) 817 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. Elitzur, Impossibility of spontaneously breaking local symmetries, Phys. Rev. D 12 (1975) 3978 [SPIRES].

    ADS  Google Scholar 

  4. B. Julia and G. Toulouse, The many-defect problem: gauge-like variables for ordered media containing defects, J. Phys. Paris 40 (1979) 395.

    Google Scholar 

  5. F. Quevedo and C.A. Trugenberger, Phases of antisymmetric tensor field theories, Nucl. Phys. B 501 (1997) 143 [hep-th/9604196] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Banks, R. Myerson and J.B. Kogut, Phase transitions in abelian lattice gauge theories, Nucl. Phys. B 129 (1977) 493 [SPIRES].

    Article  ADS  Google Scholar 

  7. H. Kleinert, Multivalued fields in condensed matter, electromagnetism and gravitation, World Scientific, Singapore (2007).

    Google Scholar 

  8. H. Kleinert, Gauge fields in condensed matter, World Scientific, Singapore (1989).

    MATH  Google Scholar 

  9. H.B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61 (1973) 45 [SPIRES].

    Article  ADS  Google Scholar 

  10. Y. Nambu, Strings, monopoles and gauge fields, Phys. Rev. D 10 (1974) 4262 [SPIRES].

    ADS  Google Scholar 

  11. Y. Nambu, Magnetic and electric confinement of quarks, Phys. Rept. 23 (1976) 250 [SPIRES].

    Article  ADS  Google Scholar 

  12. M. Creutz, The Higgs mechanism and quark confinement, Phys. Rev. D 10 (1974) 2696 [SPIRES].

    ADS  Google Scholar 

  13. G. ’t Hooft, High energy physics, Editrice Compositori, Bologna Italy (1976).

    Google Scholar 

  14. G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. G. ’t Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B 153 (1979) 141 [SPIRES].

    Article  ADS  Google Scholar 

  16. G. Parisi, Quark imprisonment and vacuum repulsion, Phys. Rev. D 11 (1975) 970 [SPIRES].

    ADS  Google Scholar 

  17. A. Jevicki and P. Senjanovic, String-like solution of Higgs model with magnetic monopoles, Phys. Rev. D 11 (1975) 860 [SPIRES].

    ADS  Google Scholar 

  18. S. Mandelstam, Vortices and quark confinement in nonabelian gauge theories, Phys. Rept. 23 (1976) 245 [SPIRES].

    Article  ADS  Google Scholar 

  19. S. Mandelstam, Charge-monopole duality and the phases of nonabelian gauge theories, Phys. Rev. D 19 (1979) 2391 [SPIRES].

    ADS  Google Scholar 

  20. J. Gamboa, L.S. Grigorio, M.S. Guimaraes, F. Mendez and C. Wotzasek, Radiative processes as a condensation phenomenon and the physical meaning of deformed canonical structures, Phys. Lett. B 668 (2008) 447 [arXiv:0805.0626] [SPIRES].

    ADS  Google Scholar 

  21. L.S. Grigorio, M.S. Guimaraes and C. Wotzasek, Monopoles in the presence of the Chern-Simons term via the Julia-Toulouse approach, Phys. Lett. B 674 (2009) 213 [arXiv:0808.3698] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  22. L.S. Grigorio, M.S. Guimaraes, R. Rougemont and C. Wotzasek, Dual approaches for defects condensation, Phys. Lett. B 690 (2010) 316 [arXiv:0908.0370] [SPIRES].

    ADS  Google Scholar 

  23. L.S. Grigorio, M.S. Guimaraes, W. Oliveira, R. Rougemont and C. Wotzasek, U(1) effective confinement theory from SU(2) restricted gauge theory via the Julia-Toulouse approach, Phys. Lett. B 697 (2011) 392 [arXiv:1010.6215] [SPIRES].

    ADS  Google Scholar 

  24. H. Kleinert, Double gauge invariance and local quantum field theory of charges and Dirac magnetic monopoles, Phys. Lett. B 246 (1990) 127 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. H. Kleinert, The extra gauge symmetry of string deformations in electromagnetism with charges and Dirac monopoles, Int. J. Mod. Phys. A 7 (1992) 4693 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. H. Kleinert, Abelian double gauge invariant continuous quantum field theory of electric charge confinement, Phys. Lett. B 293 (1992) 168 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  27. L.E. Oxman, Large dual transformations and the Petrov-Diakonov representation of the W ilson loop, Phys. Rev. D 82 (2010) 105020 [arXiv:0909.5171] [SPIRES].

    ADS  Google Scholar 

  28. G. Ripka, Dual superconductor models of color confinement, Springer, U.S.A. (2005), hep-ph/0310102 [SPIRES].

    Google Scholar 

  29. C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [SPIRES].

    Article  ADS  Google Scholar 

  30. A.V. Manohar, Effective field theories, hep-ph/9606222 [SPIRES].

  31. D.B. Kaplan, Effective field theories, nucl-th/9506035 [SPIRES].

  32. I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [SPIRES].

  33. J. Polchinski, Effective field theory and the Fermi surface, hep-th/9210046 [SPIRES].

  34. Y.M. Cho, A restricted gauge theory, Phys. Rev. D 21 (1980) 1080 [SPIRES].

    ADS  Google Scholar 

  35. Y.M. Cho, Extended gauge theory and its mass spectrum, Phys. Rev. D 23 (1981) 2415 [SPIRES].

    ADS  Google Scholar 

  36. W.S. Bae, Y.M. Cho and S.-W. Kim, QCD versus Skyrme-Faddeev theory, Phys. Rev. D 65 (2002) 025005 [hep-th/0105163] [SPIRES].

    ADS  Google Scholar 

  37. X.G. Wen, Topological orders and edge excitations in FQH states, Adv. Phys. 44 (1995) 405 [cond-mat/9506066].

    Article  ADS  Google Scholar 

  38. H.A. Kramers and G.H. Wannier, Statistics of the two-dimensional ferromagnet. Part 1, Phys. Rev. 60 (1941) 252 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72 (1977) 117 [SPIRES].

    ADS  Google Scholar 

  40. H. Osborn, Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1, Phys. Lett. B 83 (1979) 321 [SPIRES].

    ADS  Google Scholar 

  41. C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. J.A. Harvey, Magnetic monopoles, duality and supersymmetry, hep-th/9603086 [SPIRES].

  44. L. Álvarez-Gaumé and S.F. Hassan, Introduction to S-duality in N = 2 supersymmetric gauge theories: a pedagogical review of the work of Seiberg and Witten, Fortsch. Phys. 45 (1997) 159 [hep-th/9701069] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  45. P. Di Vecchia, Duality in N = 2, 4 supersymmetric gauge theories, hep-th/9803026 [SPIRES].

  46. A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [SPIRES].

  47. E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, An introduction to T duality in string theory, Nucl. Phys. Proc. Suppl. 41 (1995) 1 [hep-th/9410237] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  48. S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, Duality, self-duality, sources and charge quantization in abelian N-form theories, Phys. Lett. B 400 (1997) 80 [hep-th/9702184] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  49. C. Wotzasek, On the dimensional dependence of the electromagnetic duality groups, Phys. Rev. D 58 (1998) 125026 [hep-th/9809136] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  50. J.L. Noronha, D. Rocha, M.S. Guimaraes and C. Wotzasek, On the dimensional dependence of duality groups for massive p-forms, Phys. Lett. B 564 (2003) 163 [hep-th/0305102] [SPIRES].

    ADS  Google Scholar 

  51. T.T. Wu and C.N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. D 12 (1975) 3845 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  52. T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys. B 107 (1976) 365 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  53. X. Bekaert, Issues in electric-magnetic duality, hep-th/0209169 [SPIRES].

  54. K. Lechner and P.A. Marchetti, Duality-invariant quantum field theories of charges and monopoles, Nucl. Phys. B 569 (2000) 529 [hep-th/9906079] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  55. K. Lechner and P.A. Marchetti, Interacting branes, dual branes and dyonic branes: a unifying lagrangian approach in D dimensions, JHEP 01 (2001) 003 [hep-th/0007076] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  56. K. Lechner and P. Marchetti, Chern kernels and anomaly cancellation in M-theory, Nucl. Phys. B 672 (2003) 264 [hep-th/0302108] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  57. E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 225 [SPIRES].

    MATH  Google Scholar 

  58. H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265 [hep-th/0304245] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  59. K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [SPIRES].

    ADS  Google Scholar 

  60. P. Deligne et al., Quantum fields and strings: A course for mathematicians, volumes 1 and 2, American Mathematica Society, U.S.A. (1999).

    Google Scholar 

  61. A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  62. L.N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104 (1956) 1189 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  63. J. Bardeen, L.N. Cooper and J.R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106 (1957) 162 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  64. J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957) 1175 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20 (1950) 1064 [SPIRES].

    Google Scholar 

  66. V.L. Ginzburg, Nobel lecture: on superconductivity and superfluidity (what I have and have not managed to do) as well as on the ’physical minimum’ at the beginning of the XXI century, Rev. Mod. Phys. 76 (2004) 981 [SPIRES].

    Article  ADS  Google Scholar 

  67. A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [Zh. Eksp. Teor. Fiz. 32 (1957) 1442] [SPIRES].

    Google Scholar 

  68. A.A. Abrikosov, Nobel lecture: type-II superconductors and the vortex lattice, Rev. Mod. Phys. 76 (2004) 975 [SPIRES].

    Article  ADS  Google Scholar 

  69. M.N. Chernodub, L. Faddeev and A.J. Niemi, Non-abelian supercurrents and electroweak theory, JHEP 12 (2008) 014 [arXiv:0804.1544] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  70. F.V. Gubarev, M.I. Polikarpov and V.I. Zakharov, Monopole-antimonopole interaction in abelian Higgs model, Phys. Lett. B 438 (1998) 147 [hep-th/9805175] [SPIRES].

    ADS  Google Scholar 

  71. H. Kleinert, Disorder version of the abelian Higgs model and the order of the superconductive phase transition, Lett. Nuovo Cim. 35 (1982) 405.

    Article  MathSciNet  Google Scholar 

  72. M. Kiometzis, H. Kleinert and A.M.J. Schakel, Critical exponents of the superconducting phase transition, Phys. Rev. Lett. 73 (1994) 1975 [cond-mat/9503019].

    Article  ADS  Google Scholar 

  73. M. Kiometzis, H. Kleinert and A.M.J. Schakel, Dual description of the superconducting phase transition, Fortsch. Phys. 43 (1995) 697 [SPIRES].

    Article  ADS  Google Scholar 

  74. K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press, Cambridge U.K. (2007).

    MATH  Google Scholar 

  76. A.M. Polyakov, Compact gauge fields and the infrared catastrophe, Phys. Lett. B 59 (1975) 82 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  77. A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  78. A.M. Polyakov, Gauge fields and strings, CRC Press, U.S.A (1987).

    Google Scholar 

  79. A.M. Polyakov, Confining strings, Nucl. Phys. B 486 (1997) 23 [hep-th/9607049] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  80. G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79 (1974) 276 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  81. A.M. Polyakov, Particle spectrum in quantum field theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [SPIRES].

    ADS  Google Scholar 

  82. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Ann. Phys. 281 (2000) 409] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  83. S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [SPIRES].

    Article  ADS  Google Scholar 

  84. S. Deser and R. Jackiw, ’Selfduality’ of topologically massive gauge theories, Phys. Lett. B 139 (1984) 371 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  85. M. Nakahara, Geometry, topology and physics, IOP Publishing, U.K.(1990).

    Book  MATH  Google Scholar 

  86. C. Nash and S. Sen, Topology and geometry for physicists, Academic Press, U.S.A. (1983).

    MATH  Google Scholar 

  87. S.-S. Chern and J. Simons, Characteristic forms and geometric invariants, Annals Math. 99 (1974) 48 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  88. A.N. Redlich, Gauge noninvariance and parity nonconservation of three-dimensional fermions, Phys. Rev. Lett. 52 (1984) 18 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  89. A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  90. A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  91. F. Wilczek, Fractional statistics and anyon superconductivity, World Scientific, Singapore (1990).

    Google Scholar 

  92. F.D.M. Haldane, Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states, Phys. Rev. Lett. 51 (1983) 605 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  93. R.B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50 (1983) 1395 [SPIRES].

    Article  ADS  Google Scholar 

  94. B.L. Johnson, Understanding the Laughlin wave function for the fractional quantum Hall effect, Am. J. Phys. 70 (2002) 401.

    Article  ADS  Google Scholar 

  95. M. Henneaux and C. Teitelboim, Quantization of topological mass in the presence of a magnetic pole, Phys. Rev. Lett. 56 (1986) 689 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  96. R.D. Pisarski, Magnetic monopoles in topologically massive gauge theories, Phys. Rev. D 34 (1986) 3851 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  97. I. Affleck, J.A. Harvey, L. Palla and G.W. Semenoff, The Chern-Simons term versus the monopole, Nucl. Phys. B 328 (1989) 575 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  98. M.C. Diamantini, P. Sodano and C.A. Trugenberger, Topological excitations in compact Maxwell-Chern-Simons theory, Phys. Rev. Lett. 71 (1993) 1969 [hep-th/9306073] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  99. S.M. Carroll, G.B. Field and R. Jackiw, Limits on a Lorentz and parity violating modification of electrodynamics, Phys. Rev. D 41 (1990) 1231 [SPIRES].

    ADS  Google Scholar 

  100. D. Colladay and V.A. Kostelecky, CPT violation and the standard model, Phys. Rev. D 55 (1997) 6760 [hep-ph/9703464] [SPIRES].

    ADS  Google Scholar 

  101. D. Colladay and V.A. Kostelecky, Lorentz-violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [SPIRES].

    ADS  Google Scholar 

  102. B. Feng, M. Li, J.-Q. Xia, X. Chen and X. Zhang, Searching for CPT violation with WMAP and BOOMERANG, Phys. Rev. Lett. 96 (2006) 221302 [astro-ph/0601095] [SPIRES].

    Article  ADS  Google Scholar 

  103. B. Nodland and J.P. Ralston, Indication of anisotropy in electromagnetic propagation over cosmological distances, Phys. Rev. Lett. 78 (1997) 3043 [astro-ph/9704196] [SPIRES].

    Article  ADS  Google Scholar 

  104. J.F.C. Wardle, R.A. Perley and M.H. Cohen, Observational evidence against birefringence over cosmological distances, Phys. Rev. Lett. 79 (1997) 1801 [astro-ph/9705142] [SPIRES].

    Article  ADS  Google Scholar 

  105. V.A. Kostelecky and M. Mewes, Astrophysical tests of Lorentz and CPT violation with photons, Astrophys. J. 689 (2008) L1 [arXiv:0809.2846] [SPIRES].

    Article  ADS  Google Scholar 

  106. A.A. Andrianov and R. Soldati, Patterns of Lorentz symmetry breaking in QED by CPT-odd interaction, Phys. Lett. B 435 (1998) 449 [hep-ph/9804448] [SPIRES].

    ADS  Google Scholar 

  107. C. Adam and F.R. Klinkhamer, Causality and CPT violation from an Abelian Chern-Simons like term, Nucl. Phys. B 607 (2001) 247 [hep-ph/0101087] [SPIRES].

    Article  ADS  Google Scholar 

  108. D. Kharzeev, Parity violation in hot QCD: why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [SPIRES].

    ADS  Google Scholar 

  109. D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [SPIRES].

    ADS  Google Scholar 

  110. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [SPIRES].

    ADS  Google Scholar 

  111. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [SPIRES].

    ADS  Google Scholar 

  112. D.E. Kharzeev, Topologically induced local P and CP-violation in QCD × QED, Annals Phys. 325 (2010) 205 [arXiv:0911.3715] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  113. D.E. Kharzeev, Axial anomaly, Dirac sea and the chiral magnetic effect, arXiv:1010.0943 [SPIRES].

  114. STAR collaboration, B.I. Abelev et al., Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [SPIRES].

    Article  ADS  Google Scholar 

  115. STAR collaboration, B.I. Abelev et al., Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81 (2010) 054908 [arXiv:0909.1717] [SPIRES].

    ADS  Google Scholar 

  116. N.N. Ajitanand, R.A. Lacey, A. Taranenko and J.M. Alexander, A new method for the experimental study of topological effects in the quark-gluon plasma, Phys. Rev. C 83 (2011) 011901 [arXiv:1009.5624] [SPIRES].

    ADS  Google Scholar 

  117. N.M. Barraz, Jr., J.M. Fonseca, W.A. Moura-Melo and J.A. Helayel-Neto, On Dirac-like monopoles in a Lorentz- and CPT-violating electrodynamics, Phys. Rev. D 76 (2007) 027701 [hep-th/0703042] [SPIRES].

    ADS  Google Scholar 

  118. M.S. Guimaraes, L. Grigorio and C. Wotzasek, The dual of the Carroll-Field-Jackiw model, hep-th/0609215 [SPIRES].

  119. M.C. Gonzalez-Garcia and Y. Nir, Developments in neutrino physics, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [SPIRES].

    Article  ADS  Google Scholar 

  120. V.A. Kostelecky and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83 (2011) 11 [arXiv:0801.0287] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wotzasek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorio, L.S., Guimaraes, M.S., Rougemont, R. et al. Confinement, brane symmetry and the Julia-Toulouse approach for condensation of defects. J. High Energ. Phys. 2011, 118 (2011). https://doi.org/10.1007/JHEP08(2011)118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)118

Keywords

Navigation