Skip to main content
Log in

The spectrum of goldstini and modulini

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

When supersymmetry is broken in multiple sectors via independent dynamics, the theory furnishes a corresponding multiplicity of “goldstini” degrees of freedom which may play a substantial role in collider phenomenology and cosmology. In this paper, we explore the tree-level mass spectrum of goldstini arising from a general admixture of F -term, D -term, and almost no-scale supersymmetry breaking, employing non-linear superfields and a novel gauge fixing for supergravity discussed in a companion paper. In theories of F -term and D -term breaking, goldstini acquire a mass which is precisely twice the gravitino mass, while the inclusion of no-scale breaking renders one of these modes, the modulino, massless. We argue that the vanishing modulino mass can be explained in terms of an accidental and spontaneously broken “global” supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  2. D. Balin and A. Love, Supersymmetric gauge field theory and string theory, Taylor & Francis Group, New York U.S.A. (1994).

    Book  Google Scholar 

  3. E. Cremmer et al., Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant, Nucl. Phys. B 147 (1979) 105 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: lagrangian, transformation laws and super-Higgs effect, Nucl. Phys. B 212 (1983) 413 [SPIRES].

    Article  ADS  Google Scholar 

  5. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  6. D.J.H. Chung et al., The soft supersymmetry-breaking lagrangian: theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [SPIRES].

    Article  ADS  Google Scholar 

  7. M.A. Luty, 2004 TASI lectures on supersymmetry breaking, hep-th/0509029 [SPIRES].

  8. J. Bagger, E. Poppitz and L. Randall, The R axion from dynamical supersymmetry breaking, Nucl. Phys. B 426 (1994) 3 [hep-ph/9405345] [SPIRES].

    Article  ADS  Google Scholar 

  9. H.-S. Goh and M. Ibe, R-axion detection at LHC, JHEP 03 (2009) 049 [arXiv:0810.5773] [SPIRES].

    Article  ADS  Google Scholar 

  10. D. Shih, Pseudomoduli dark matter, JHEP 09 (2009) 046 [arXiv:0906.3346] [SPIRES].

    Article  ADS  Google Scholar 

  11. B. Keren-Zur, L. Mazzucato and Y. Oz, Dark matter and pseudo-flat directions in weakly coupled SUSY breaking sectors, JHEP 09 (2009) 041 [arXiv:0906.5586] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Cheung, J. Mardon, Y. Nomura and J. Thaler, A definitive signal of multiple supersymmetry breaking, JHEP 07 (2010) 035 [arXiv:1004.4637] [SPIRES].

    Article  ADS  Google Scholar 

  14. N. Craig, J. March-Russell and M. McCullough, The goldstini variations, JHEP 10 (2010) 095 [arXiv:1007.1239] [SPIRES].

    Article  ADS  Google Scholar 

  15. R. Argurio, Z. Komargodski and A. Mariotti, Pseudo-goldstini in field theory, Phys. Rev. Lett. 107 (2011) 061601 [arXiv:1102.2386] [SPIRES].

    Article  ADS  Google Scholar 

  16. J. Thaler and Z. Thomas, Goldstini can give the Higgs a boost, JHEP 07 (2011) 060 [arXiv:1103.1631] [SPIRES].

    Article  ADS  Google Scholar 

  17. H.-C. Cheng, W.-C. Huang, I. Low and A. Menon, Goldstini as the decaying dark matter, JHEP 03 (2011) 019 [arXiv:1012.5300] [SPIRES].

    Article  ADS  Google Scholar 

  18. M. McCullough, Stimulated supersymmetry breaking, Phys. Rev. D 82 (2010) 115016 [arXiv:1010.3203] [SPIRES].

    ADS  Google Scholar 

  19. K.I. Izawa, Y. Nakai and T. Shimomura, Higgs portal to visible supersymmetry breaking, JHEP 03 (2011) 007 [arXiv:1101.4633] [SPIRES].

    Article  ADS  Google Scholar 

  20. K. Benakli and C. Moura, Brane-worlds pseudo-goldstinos, Nucl. Phys. B 791 (2008) 125 [arXiv:0706.3127] [SPIRES].

    Article  ADS  Google Scholar 

  21. M.A. Luty and N. Okada, Almost no-scale supergravity, JHEP 04 (2003) 050 [hep-th/0209178] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Rattazzi, A. Strumia and J.D. Wells, Phenomenology of deflected anomaly mediation, Nucl. Phys. B 576 (2000) 3 [hep-ph/9912390] [SPIRES].

    Article  ADS  Google Scholar 

  23. C. Cheung, F. D’Eramo and J. Thaler, Supergravity computations without gravity complications, arXiv:1104.2598 [SPIRES].

  24. W. Siegel and S.J. Gates, Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [SPIRES].

    Article  ADS  Google Scholar 

  25. S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [SPIRES].

    Google Scholar 

  26. W.D. Linch, III, M.A. Luty and J. Phillips, Five dimensional supergravity in N =1 superspace, Phys. Rev. D 68 (2003) 025008 [hep-th/0209060] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  27. Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. A.B. Lahanas and D.V. Nanopoulos, The road to no scale supergravity, Phys. Rept. 145 (1987) 1 [SPIRES].

    Article  ADS  Google Scholar 

  29. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  30. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Thaler.

Additional information

ArXiv ePrint:1104.2600

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, C., D’Eramo, F. & Thaler, J. The spectrum of goldstini and modulini. J. High Energ. Phys. 2011, 115 (2011). https://doi.org/10.1007/JHEP08(2011)115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)115

Keywords

Navigation