Skip to main content
Log in

Non-commutativity parameters depend not only on the effective coordinate but on its T-dual as well

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We extend our investigations of the open string propagation in the weakly curved background to the case when Kalb-Ramond field, beside the infinitesimal term linear in coordinate B μνρ x ρ, contains the constant term b μν ≠ 0. In two previously investigated cases, for the flat background (b μν ≠ 0 and B μνρ = 0) and the weakly curved one (b μν ≠ 0 and B μνρ = 0) the effective metric is constant and the effective Kalb-Ramond field is zero. In the present article (b μν ≠ 0 and B μνρ = 0) the effective metric is coordinate dependent and there exists non-trivial effective Kalb-Ramond field. It depends on the σ-integral of the effective momentum P μ(σ) = ∫ σ0 dηp μ(η), which is in fact T-dual of the effective coordinate, \( {P_\mu } = \kappa {g_{\mu \nu }}{\tilde{q}^\nu } \). Beside the standard coordinate dependent term θ μν(q), in the non-commutativity parameter, which is nontrivial only on the string end-points, there are additional P μ (or \( {\tilde{q}^\mu } \)) dependent terms which are nontrivial both at the string endpoints and at the string interior. The additional terms are infinitesimally small. The part of one of these terms has been obtained in ref. [22] and the others are our improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998) 008 [hep-th/9711165] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  3. V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. V. Schomerus, Lectures on branes in curved backgrounds, Class. Quant. Grav. 19 (2002) 5781 [hep-th/0209241] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. F. Ardalan, H. Arfaei and M.M. Sheikh-Jabbari, Noncommutative geometry from strings and branes, JHEP 02 (1999) 016 [hep-th/9810072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Ardalan, H. Arfaei and M.M. Sheikh-Jabbari, Dirac quantization of open strings and noncommutativity in branes, Nucl. Phys. B 576 (2000) 578 [hep-th/9906161] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. C.-S. Chu and P.-M. Ho, Constrained quantization of open string in background B field and noncommutative D-brane, Nucl. Phys. B 568 (2000) 447 [hep-th/9906192] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Lee, Canonical quantization of open string and noncommutative geometry, Phys. Rev. D 62 (2000) 024022 [hep-th/9911140] [SPIRES].

    ADS  Google Scholar 

  11. B. Sazdović, Dilaton field induces commutative Dp-brane coordinate, Eur. Phys. J. C 44 (2005) 599 [hep-th/0408131] [SPIRES].

    Article  ADS  Google Scholar 

  12. B. Nikolić and B. Sazdović, Gauge symmetries decrease the number of Dp-brane dimensions, Phys. Rev. D 74 (2006) 045024 [hep-th/0604129] [SPIRES].

    ADS  Google Scholar 

  13. B. Nikolić and B. Sazdović, Gauge symmetries decrease the number of Dp-brane dimensions. II. Inclusion of the Liouville term, Phys. Rev. D 75 (2007) 085011 [hep-th/0611191] [SPIRES].

    ADS  Google Scholar 

  14. B. Nikolić and B. Sazdović, Noncommutativity in the space-time extended by Liouville field, Adv. Theor. Math. Phys. 14 (2010) 1 [arXiv:0711.4463] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  15. J. de Boer, P.A. Grassi and P. van Nieuwenhuizen, Non-commutative superspace from string theory, Phys. Lett. B 574 (2003) 98 [hep-th/0302078] [SPIRES].

    ADS  Google Scholar 

  16. B. Nikolić and B. Sazdović, Type I background fields in terms of type IIB ones, Phys. Lett. B 666 (2008) 400 [arXiv:0804.2617] [SPIRES].

    ADS  Google Scholar 

  17. B. Nikolić and B. Sazdović, D 5-brane type-I superstring background fields in terms of type IIB ones by canonical method and T -duality approach, Nucl. Phys. B 836 (2010) 100 [arXiv:1004.1962] [SPIRES].

    Article  ADS  Google Scholar 

  18. B. Nikolić and B. Sazdović, Noncommutativity relations in type IIB theory and their supersymmetry, JHEP 08 (2010) 037 [arXiv:1005.1181] [SPIRES].

    Article  ADS  Google Scholar 

  19. L. Cornalba and R. Schiappa, Nonassociative Star Product Deformations for D-Brane World-Volumes in Curved Backgrounds, Commun. Math. Phys. 225 (2002) 33.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. M. Herbst, A. Kling and M. Kreuzer, Star products from open strings in curved backgrounds, JHEP 09 (2001) 014 [hep-th/0106159] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. A.Y. Alekseev, A. Recknagel and V. Schomerus, Non-commutative world-volume geometries: Branes on SU(2) and fuzzy spheres, JHEP 09 (1999) 023 [hep-th/9908040] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. P.-M. Ho and Y.-T. Yeh, Noncommutative D-brane in non-constant NS-NS B field background, Phys. Rev. Lett. 85 (2000) 5523 [hep-th/0005159] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. Lj. Davidović and B. Sazdović, Noncommutativity in weakly curved background by canonical methods, Phys. Rev. D 83 (2011) 066014 [arXiv:1004.4483] [SPIRES].

    ADS  Google Scholar 

  24. B. Sazdović, Chiral symmetries of the WZNW model by Hamiltonian methods, Phys. Lett. B 352 (1995) 64 [hep-th/9503147] [SPIRES];

    ADS  Google Scholar 

  25. E.S. Fradkin and A.A. Tseytlin, Effective Field Theory from Quantized Strings, Phys. Lett. B 158 (1985) 316 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. E.S. Fradkin and A.A. Tseytlin, Quantum String Theory Effective Action, Nucl. Phys. B 261 (1985) 1 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in Background Fields, Nucl. Phys. B 262 (1985) 593 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Banks, D. Nemeschansky and A. Sen, Dilaton Coupling and BRST Quantization of Bosonic Strings, Nucl. Phys. B 277 (1986) 67 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, Cambridge U.K. (1987).

    MATH  Google Scholar 

  30. J. Polchinski, String theory, Cambridge University Press, Cambridge U.K. (1998).

    Book  Google Scholar 

  31. Zwiebach, A First Course in String Theory, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

  32. Lj. Davidović and B. Sazdović, T-dual-coordinate dependence makes the effective Kalb-Ramond field nontrivial, arXiv:1105.2809 [SPIRES].

  33. A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  34. M.M. Sheikh-Jabbari, A note on T -duality, open strings in B-field background and canonical transformations, Phys. Lett. B 474 (2000) 292 [hep-th/9911203] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  35. M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. M.M. Sheikh-Jabbari and A. Shirzad, Boundary conditions as Dirac constraints, Eur. Phys. J. C 19 (2001) 383 [hep-th/9907055] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. E.S. Fradkin and A.A. Tseytlin, Nonlinear Electrodynamics from Quantized Strings, Phys. Lett. B 163 (1985) 123 [SPIRES].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lj. Davidović.

Additional information

Work supported in part by the Serbian Ministry of Science and Technological Development, under contract No. 171031.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidović, L., Sazdović, B. Non-commutativity parameters depend not only on the effective coordinate but on its T-dual as well. J. High Energ. Phys. 2011, 112 (2011). https://doi.org/10.1007/JHEP08(2011)112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)112

Keywords

Navigation