Skip to main content

Effective temperature for black holes

Abstract

The physical interpretation of black hole’s quasinormal modes is fundamental for realizing unitary quantum gravity theory as black holes are considered theoretical laboratories for testing models of such an ultimate theory and their quasinormal modes are natural candidates for an interpretation in terms of quantum levels.

The spectrum of black hole’s quasinormal modes can be re-analysed by introducing a black hole’s effective temperature which takes into account the fact that, as shown by Parikh and Wilczek, the radiation spectrum cannot be strictly thermal. This issue changes in a fundamental way the physical understanding of such a spectrum and enables a re-examination of various results in the literature which realizes important modifies on quantum physics of black holes. In particular, the formula of the horizon’s area quantization and the number of quanta of area result modified becoming functions of the quantum “overtone” number n. Consequently, the famous formula of Bekenstein-Hawking entropy, its sub-leading corrections and the number of microstates are also modified. Black hole’s entropy results a function of the quantum overtone number too.

We emphasize that this is the first time that black hole’s entropy is directly connected with a quantum number.

Previous results in the literature are re-obtained in the limit n → ∞.

This is a preview of subscription content, access via your institution.

References

  1. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. M.K. Parikh, A secret tunnel through the horizon, Int. J. Mod. Phys. D 13 (2004) 2351 [Gen. Rel. Grav. 36 (2004) 2419] [hep-th/0405160] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  3. M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Padmanabhan, Quasi normal modes: a simple derivation of the level spacing of the frequencies, Class. Quant. Grav. 21 (2004) L1 [gr-qc/0310027] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Maggiore, The physical interpretation of the spectrum of black hole quasinormal modes, Phys. Rev. Lett. 100 (2008) 141301 [arXiv:0711.3145] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. H.-P. Nollert, Quasinormal modes of Schwarzschild black holes: the determination of quasinormal frequencies with very large imaginary parts, Phys. Rev. D 47 (1993) 5253 [SPIRES].

    ADS  Google Scholar 

  7. N. Andersson, On the asymptotic distribution of quasinormal-mode frequencies for Schwarzschild black holes, Class. Quant. Grav. 10 (1993) L61.

    Article  ADS  Google Scholar 

  8. L. Motl, An analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys. 6 (2003) 1135 [gr-qc/0212096] [SPIRES].

    MathSciNet  Google Scholar 

  9. L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7 (2003) 307 [hep-th/0301173] [SPIRES].

    MathSciNet  Google Scholar 

  10. J.D. Bekenstein, The quantum mass spectrum of the Kerr black hole, Lett. Nuovo Cim. 11 (1974) 467 [SPIRES].

    Article  ADS  Google Scholar 

  11. S. Hod, Bohr’s correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett. 81 (1998) 4293 [gr-qc/9812002] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. O. Dreyer, Quasinormal modes, the area spectrum and black hole entropy, Phys. Rev. Lett. 90 (2003) 081301 [gr-qc/0211076] [SPIRES].

    Article  ADS  Google Scholar 

  13. J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [SPIRES].

    Article  ADS  Google Scholar 

  14. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  15. A. Barvinsky and G. Kunstatter, Mass spectrum for black holes in generic 2D dilaton gravity, gr-qc/9607030 [SPIRES].

  16. A. Barvinsky, S. Das and G. Kunstatter, Spectrum of charged black holes — the big fix mechanism revisited, Class. Quant. Grav. 18 (2001) 4845 [gr-qc/0012066] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. D. Kothawala, T. Padmanabhan and S. Sarkar, Is gravitational entropy quantized?, Phys. Rev. D 78 (2008) 104018 [arXiv:0807.1481] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  18. S. Shankaranarayanan, Do subleading corrections to Bekenstein-Hawking entropy hold the key to quantum gravity?, Mod. Phys. Lett. A 23 (2008) 1975 [arXiv:0805.4531] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  19. J. Zhang, Black hole quantum tunnelling and black hole entropy correction, Phys. Lett. B 668 (2008) 353 [arXiv:0806.2441] [SPIRES].

    ADS  Google Scholar 

  20. A. Ghosh and P. Mitra, A bound on the log correction to the black hole area law, Phys. Rev. D 71 (2005) 027502 [gr-qc/0401070] [SPIRES].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Corda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corda, C. Effective temperature for black holes. J. High Energ. Phys. 2011, 101 (2011). https://doi.org/10.1007/JHEP08(2011)101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)101

Keywords