Abstract
The physical interpretation of black hole’s quasinormal modes is fundamental for realizing unitary quantum gravity theory as black holes are considered theoretical laboratories for testing models of such an ultimate theory and their quasinormal modes are natural candidates for an interpretation in terms of quantum levels.
The spectrum of black hole’s quasinormal modes can be re-analysed by introducing a black hole’s effective temperature which takes into account the fact that, as shown by Parikh and Wilczek, the radiation spectrum cannot be strictly thermal. This issue changes in a fundamental way the physical understanding of such a spectrum and enables a re-examination of various results in the literature which realizes important modifies on quantum physics of black holes. In particular, the formula of the horizon’s area quantization and the number of quanta of area result modified becoming functions of the quantum “overtone” number n. Consequently, the famous formula of Bekenstein-Hawking entropy, its sub-leading corrections and the number of microstates are also modified. Black hole’s entropy results a function of the quantum overtone number too.
We emphasize that this is the first time that black hole’s entropy is directly connected with a quantum number.
Previous results in the literature are re-obtained in the limit n → ∞.
This is a preview of subscription content, access via your institution.
References
S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [SPIRES].
M.K. Parikh, A secret tunnel through the horizon, Int. J. Mod. Phys. D 13 (2004) 2351 [Gen. Rel. Grav. 36 (2004) 2419] [hep-th/0405160] [SPIRES].
M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES].
T. Padmanabhan, Quasi normal modes: a simple derivation of the level spacing of the frequencies, Class. Quant. Grav. 21 (2004) L1 [gr-qc/0310027] [SPIRES].
M. Maggiore, The physical interpretation of the spectrum of black hole quasinormal modes, Phys. Rev. Lett. 100 (2008) 141301 [arXiv:0711.3145] [SPIRES].
H.-P. Nollert, Quasinormal modes of Schwarzschild black holes: the determination of quasinormal frequencies with very large imaginary parts, Phys. Rev. D 47 (1993) 5253 [SPIRES].
N. Andersson, On the asymptotic distribution of quasinormal-mode frequencies for Schwarzschild black holes, Class. Quant. Grav. 10 (1993) L61.
L. Motl, An analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys. 6 (2003) 1135 [gr-qc/0212096] [SPIRES].
L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7 (2003) 307 [hep-th/0301173] [SPIRES].
J.D. Bekenstein, The quantum mass spectrum of the Kerr black hole, Lett. Nuovo Cim. 11 (1974) 467 [SPIRES].
S. Hod, Bohr’s correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett. 81 (1998) 4293 [gr-qc/9812002] [SPIRES].
O. Dreyer, Quasinormal modes, the area spectrum and black hole entropy, Phys. Rev. Lett. 90 (2003) 081301 [gr-qc/0211076] [SPIRES].
J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [SPIRES].
J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [SPIRES].
A. Barvinsky and G. Kunstatter, Mass spectrum for black holes in generic 2D dilaton gravity, gr-qc/9607030 [SPIRES].
A. Barvinsky, S. Das and G. Kunstatter, Spectrum of charged black holes — the big fix mechanism revisited, Class. Quant. Grav. 18 (2001) 4845 [gr-qc/0012066] [SPIRES].
D. Kothawala, T. Padmanabhan and S. Sarkar, Is gravitational entropy quantized?, Phys. Rev. D 78 (2008) 104018 [arXiv:0807.1481] [SPIRES].
S. Shankaranarayanan, Do subleading corrections to Bekenstein-Hawking entropy hold the key to quantum gravity?, Mod. Phys. Lett. A 23 (2008) 1975 [arXiv:0805.4531] [SPIRES].
J. Zhang, Black hole quantum tunnelling and black hole entropy correction, Phys. Lett. B 668 (2008) 353 [arXiv:0806.2441] [SPIRES].
A. Ghosh and P. Mitra, A bound on the log correction to the black hole area law, Phys. Rev. D 71 (2005) 027502 [gr-qc/0401070] [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Corda, C. Effective temperature for black holes. J. High Energ. Phys. 2011, 101 (2011). https://doi.org/10.1007/JHEP08(2011)101
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2011)101