Skip to main content
Log in

Analytical study on holographic superconductors in external magnetic field

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the holographic superconductors immersed in an external magnetic field by using the analytical approach. We obtain the spatially dependent condensate solutions in the presence of the magnetism and find analytically that the upper critical magnetic field satisfies the relation given in the Ginzburg-Landau theory. The external magnetic field expels the condensate and makes the condensation harder to form. Extending to the D-dimensional Gauss-Bonnet AdS black holes, we examine the influence given by the Gauss-Bonnet coupling on the condensation. Different from the positive coupling, we find that the negative Gauss-Bonnet coupling enhances the condensation when the external magnetism is not strong enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  5. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    ADS  Google Scholar 

  7. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. T. Albash and C.V. Johnson, A holographic superconductor in an external magnetic field, JHEP 09 (2008) 121 [arXiv:0804.3466] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. T. Albash and C.V. Johnson, Phases of holographic superconductors in an external magnetic field, arXiv:0906.0519 [SPIRES].

  10. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  11. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. T. Albash and C.V. Johnson, Vortex and droplet engineering in holographic superconductors, Phys. Rev. D 80 (2009) 126009 [arXiv:0906.1795] [SPIRES].

    ADS  Google Scholar 

  13. M. Montull, A. Pomarol and P.J. Silva, The holographic superconductor vortex, Phys. Rev. Lett. 103 (2009) 091601 [arXiv:0906.2396] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [SPIRES].

    ADS  Google Scholar 

  15. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].

    ADS  Google Scholar 

  17. E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [SPIRES].

    ADS  Google Scholar 

  18. I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of holographic superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Exact gravity dual of a gapless superconductor, JHEP 07 (2009) 026 [arXiv:0902.0733] [SPIRES].

    ADS  Google Scholar 

  20. K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].

    ADS  Google Scholar 

  21. J. Sonner, A rotating holographic superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627] [SPIRES].

    ADS  Google Scholar 

  22. H.-b. Zeng, Z.-y. Fan and Z.-z. Ren, Time reversal symmetry breaking holographic superconductor in constant external magnetic field, Phys. Rev. D 80 (2009) 066001 [arXiv:0906.2323] [SPIRES].

    ADS  Google Scholar 

  23. D.-W. Pang, R 2 corrections to asymptotically Lifshitz spacetimes, JHEP 10 (2009) 031 [arXiv:0908.1272] [SPIRES].

    ADS  Google Scholar 

  24. D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [SPIRES].

    ADS  Google Scholar 

  25. D.-W. Pang, Conductivity and diffusion constant in Lifshitz backgrounds, JHEP 01 (2010) 120 [arXiv:0912.2403] [SPIRES].

    ADS  Google Scholar 

  26. S.-J. Sin and I. Zahed, Holographic dual of cold trapped fermions, JHEP 12 (2009) 015 [arXiv:0907.1434] [SPIRES].

    ADS  Google Scholar 

  27. R.-G. Cai and H.-Q. Zhang, Holographic superconductors with Hořava-Lifshitz black holes, Phys. Rev. D 81 (2010) 066003 [arXiv:0911.4867] [SPIRES].

    ADS  Google Scholar 

  28. R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, arXiv:1007.3321 [SPIRES].

  29. J. Jing, L. Wang and S. Chen, Holographic superconductors in z = 3 Hořava-Lifshitz Gravity without condition of detailed balance, arXiv:1001.1472 [SPIRES].

  30. S.-J. Sin, S.-S. Xu and Y. Zhou, Holographic superconductor for a Lifshitz fixed point, arXiv:0909.4857 [SPIRES].

  31. S. Pu, S.-J. Sin and Y. Zhou, A Holographic model for non-relativistic superconductor, arXiv:0903.4185 [SPIRES].

  32. S. Chen, L. Wang, C. Ding and J. Jing, Holographic superconductors in the AdS black hole spacetime with a global monopole, Nucl. Phys. B 836 (2010) 222 [arXiv:0912.2397] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [SPIRES].

    ADS  Google Scholar 

  34. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  36. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    ADS  Google Scholar 

  37. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A.B. Pavan, Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [SPIRES].

    ADS  Google Scholar 

  39. Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, arXiv:1005.4743 [SPIRES].

  40. Y. Liu, Q. Pan, B. Wang and R.-G. Cai, Dynamical perturbations and critical phenomena in Gauss-Bonnet-AdS black holes, arXiv:1007.2536 [SPIRES].

  41. C.P. Poole, H.A. Farach and R.J. Creswick, Superconductivity, Academic Press, The Netherlands (2007).

    Google Scholar 

  42. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    ADS  Google Scholar 

  44. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity bound, causality violation and instability with stringy correction and charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].

    ADS  Google Scholar 

  46. X.-H. Ge, S.-J. Sin, S.-F. Wu and G.-H. Yang, Shear viscosity and instability from third order Lovelock gravity, Phys. Rev. D 80 (2009) 104019 [arXiv:0905.2675] [SPIRES].

    ADS  Google Scholar 

  47. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].

    ADS  Google Scholar 

  49. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].

    ADS  Google Scholar 

  50. F.-W. Shu, The quantum viscosity bound in Lovelock gravity, Phys. Lett. B 685 (2010) 325 [arXiv:0910.0607] [SPIRES].

    ADS  Google Scholar 

  51. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

    Google Scholar 

  52. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    ADS  Google Scholar 

  53. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].

    ADS  Google Scholar 

  54. X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of quantum field theory in statistical physics, Dover Inc., New York U.S.A. (1963).

    MATH  Google Scholar 

  56. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].

    ADS  Google Scholar 

  57. I.P. Neupane, Black hole entropy in string-generated gravity models, Phys. Rev. D 67 (2003) 061501 [hep-th/0212092] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. I.P. Neupane, Thermodynamic and gravitational instability on hyperbolic spaces, Phys. Rev. D 69 (2004) 084011 [hep-th/0302132] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Additional information

ArXiv ePrint: 1002.4901

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, XH., Wang, B., Wu, SF. et al. Analytical study on holographic superconductors in external magnetic field. J. High Energ. Phys. 2010, 108 (2010). https://doi.org/10.1007/JHEP08(2010)108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)108

Keywords

Navigation