Scalar electroweak multiplet dark matter

  • Wei ChaoEmail author
  • Gui-Jun Ding
  • Xiao-Gang He
  • Michael Ramsey-Musolf
Open Access
Regular Article - Theoretical Physics


We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter. We derive the most general, renormalizable scalar potential, assuming the presence of the Standard Model Higgs doublet, H, and an electroweak multiplet Φ of arbitrary SU(2)L rank and hypercharge, Y. We show that, in general, the Φ-H Higgs portal interactions depend on three, rather than two independent couplings as has been previously considered in the literature. For the phenomenologically viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider the interplay of relic density and spin-independent direct detection cross section. We show that both the relic density and direct detection cross sections depend on a single linear combination of Higgs portal couplings, λeff. For λeff\( \mathcal{O} \)(1), present direct detection exclusion limits imply that the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of the observed DM relic density.


Beyond Standard Model Cosmology of Theories beyond the SM Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  2. [2]
    P. Fileviez Perez, H.H. Patel, M. Ramsey-Musolf and K. Wang, Triplet Scalars and Dark Matter at the LHC, Phys. Rev. D 79 (2009) 055024 [arXiv:0811.3957] [INSPIRE].ADSGoogle Scholar
  3. [3]
    W.-B. Lu and P.-H. Gu, Mixed Inert Scalar Triplet Dark Matter, Radiative Neutrino Masses and Leptogenesis, Nucl. Phys. B 924 (2017) 279 [arXiv:1611.02106] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    O. Fischer and J.J. van der Bij, The scalar Singlet-Triplet Dark Matter Model, JCAP 01 (2014) 032 [arXiv:1311.1077] [INSPIRE].
  5. [5]
    F.-X. Josse-Michaux and E. Molinaro, Triplet scalar dark matter and leptogenesis in an inverse seesaw model of neutrino mass generation, Phys. Rev. D 87 (2013) 036007 [arXiv:1210.7202] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Basak and S. Mohanty, Triplet-Singlet Extension of the MSSM with a 125 GeV Higgs and Dark Matter, Phys. Rev. D 86 (2012) 075031 [arXiv:1204.6592] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Araki, C.Q. Geng and K.I. Nagao, Dark Matter in Inert Triplet Models, Phys. Rev. D 83 (2011) 075014 [arXiv:1102.4906] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P.B. Pal, Cold dark matter in the doublet-triplet model, Phys. Lett. B 205 (1988) 65 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Bahrami and M. Frank, Dark Matter in the Higgs Triplet Model, Phys. Rev. D 91 (2015) 075003 [arXiv:1502.02680] [INSPIRE].ADSGoogle Scholar
  10. [10]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. 161B (1985) 136 [INSPIRE].
  11. [11]
    J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].
  14. [14]
    M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex Scalar Singlet Dark Matter: Vacuum Stability and Phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].ADSGoogle Scholar
  15. [15]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on Scalar Dark Matter from Direct Experimental Searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].ADSGoogle Scholar
  16. [16]
    Y. Cai, X.-G. He and B. Ren, Low Mass Dark Matter and Invisible Higgs Width In Darkon Models, Phys. Rev. D 83 (2011) 083524 [arXiv:1102.1522] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs Vacuum Stability, Neutrino Mass and Dark Matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Y. Cai, W. Chao and S. Yang, Scalar Septuplet Dark Matter and Enhanced h → γγ Decay Rate, JHEP 12 (2012) 043 [arXiv:1208.3949] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W. Chao, Hybrid Dark Matter, arXiv:1805.04830 [INSPIRE].
  20. [20]
    W. Chao, M.J. Ramsey-Musolf and J.-H. Yu, Indirect Detection Imprint of a CP-violating Dark Sector, Phys. Rev. D 93 (2016) 095025 [arXiv:1602.05192] [INSPIRE].ADSGoogle Scholar
  21. [21]
    W. Chao, Dark matter, LFV and neutrino magnetic moment in the radiative seesaw model with fermion triplet, Int. J. Mod. Phys. A 30 (2015) 1550007 [arXiv:1202.6394] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
  23. [23]
    L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-Doublet Dark Matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Bauer, U. Haisch and F. Kahlhoefer, Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators, JHEP 05 (2017) 138 [arXiv:1701.07427] [INSPIRE].
  26. [26]
    E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Borah and J.M. Cline, Inert Doublet Dark Matter with Strong Electroweak Phase Transition, Phys. Rev. D 86 (2012) 055001 [arXiv:1204.4722] [INSPIRE].ADSGoogle Scholar
  28. [28]
    W. Chao, H.-K. Guo and J. Shu, Gravitational Wave Signals of Electroweak Phase Transition Triggered by Dark Matter, JCAP 09 (2017) 009 [arXiv:1702.02698] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.S.C. Law and K.L. McDonald, A Class of Inert N-tuplet Models with Radiative Neutrino Mass and Dark Matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Kopp, E.T. Neil, R. Primulando and J. Zupan, From Gamma Ray Line Signals of Dark Matter to the LHC, Phys. Dark Univ. 2 (2013) 22 [Erratum ibid. 2 (2013) 176] [arXiv:1301.1683] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer and M.H.G. Tytgat, Gamma-rays from Heavy Minimal Dark Matter, JCAP 10 (2015) 058 [arXiv:1507.05536] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Hamada, K. Kawana and K. Tsumura, Landau pole in the Standard Model with weakly interacting scalar fields, Phys. Lett. D 747 (2015) 238 [arXiv:1505.01721] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  35. [35]
    S.S. AbdusSalam and T.A. Chowdhury, Scalar Representations in the Light of Electroweak Phase Transition and Cold Dark Matter Phenomenology, JCAP 05 (2014) 026 [arXiv:1310.8152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct Detection of Electroweak-Interacting Dark Matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].
  37. [37]
    J. Hisano, D. Kobayashi, N. Mori and E. Senaha, Effective Interaction of Electroweak-Interacting Dark Matter with Higgs Boson and Its Phenomenology, Phys. Lett. B 742 (2015) 80 [arXiv:1410.3569] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection I: weak-scale matching, Phys. Rev. D 91 (2015) 043504 [arXiv:1401.3339] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].ADSGoogle Scholar
  40. [40]
    L. Di Luzio, R. Gröber, J.F. Kamenik and M. Nardecchia, Accidental matter at the LHC, JHEP 07 (2015) 074 [arXiv:1504.00359] [INSPIRE].
  41. [41]
    E. Del Nobile, M. Nardecchia and P. Panci, Millicharge or Decay: A Critical Take on Minimal Dark Matter, JCAP 04 (2016) 048 [arXiv:1512.05353] [INSPIRE].
  42. [42]
    W.J.G. de Blok, The Core-Cusp Problem, Adv. Astron. 2010 (2010) 789293 [arXiv:0910.3538] [INSPIRE].
  43. [43]
    S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
  45. [45]
    T. Nihei, L. Roszkowski and R. Ruiz de Austri, Exact cross-sections for the neutralino slepton coannihilation, JHEP 07 (2002) 024 [hep-ph/0206266] [INSPIRE].
  46. [46]
    K.A. Olive, D.N. Schramm and G. Steigman, Limits on New Superweakly Interacting Particles from Primordial Nucleosynthesis, Nucl. Phys. B 180 (1981) 497 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  48. [48]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
  49. [49]
    H.E. Logan and T. Pilkington, Large scalar multiplet dark matter in the high-mass region, Phys. Rev. D 96 (2017) 015030 [arXiv:1610.08835] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  52. [52]
    T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].ADSGoogle Scholar
  57. [57]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  59. [59]
    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Ramsey-Musolf et al., in preparation.Google Scholar
  61. [61]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Hally, H.E. Logan and T. Pilkington, Constraints on large scalar multiplets from perturbative unitarity, Phys. Rev. D 85 (2012) 095017 [arXiv:1202.5073] [INSPIRE].ADSGoogle Scholar
  64. [64]
    K. Earl, K. Hartling, H.E. Logan and T. Pilkington, Constraining models with a large scalar multiplet, Phys. Rev. D 88 (2013) 015002 [arXiv:1303.1244] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Wei Chao
    • 1
    Email author
  • Gui-Jun Ding
    • 2
  • Xiao-Gang He
    • 3
    • 4
    • 5
  • Michael Ramsey-Musolf
    • 6
    • 7
  1. 1.Center for advanced quantum studies, Department of PhysicsBeijing Normal UniversityBeijingChina
  2. 2.Interdisciplinary Center for Theoretical Study and Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Tsung-Dao Lee Institute, and School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  5. 5.National Center for Theoretical SciencesHsinchuTaiwan
  6. 6.Amherst Center for Fundamental InteractionsUniversity of Massachusetts-AmherstAmherstU.S.A.
  7. 7.Kellogg Radiation LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations