Cancellation of one-loop corrections to scalar masses in Yang-Mills theory with flux compactification

  • Takuya HiroseEmail author
  • Nobuhito Maru
Open Access
Regular Article - Theoretical Physics


We calculate one-loop corrections to the mass for the zero mode of scalar field in a six-dimensional Yang-Mills theory compactified on a torus with magnetic flux. It is shown that these corrections are exactly cancelled thanks to a shift symmetry under the translation in extra spaces. This result is expected from the fact that the zero mode of scalar field is a Nambu-Goldstone boson of the translational invariance in extra spaces.


Field Theories in Higher Dimensions Flux compactifications Effective Field Theories Spontaneous Symmetry Breaking 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    L.E. Ibáñez and A.M. Uranga, String theory and particle physics: An introduction to string theory, Cambridge University Press, (2012).Google Scholar
  3. [3]
    C. Bachas, A way to break supersymmetry, hep-th/9503030 [INSPIRE].
  4. [4]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. 149B (1984) 351 [INSPIRE].
  6. [6]
    H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Higher Order Couplings in Magnetized Brane Models, JHEP 06 (2009) 080 [arXiv:0903.3800] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    Y. Matsumoto and Y. Sakamura, Yukawa couplings in 6D gauge-Higgs unification on T 2 /Z N with magnetic fluxes, PTEP 2016 (2016) 053B06 [arXiv:1602.01994] [INSPIRE].
  8. [8]
    W. Buchmüller, M. Dierigl, E. Dudas and J. Schweizer, Effective field theory for magnetic compactifications, JHEP 04 (2017) 052 [arXiv:1611.03798] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D.M. Ghilencea and H.M. Lee, Wilson lines and UV sensitivity in magnetic compactifications, JHEP 06 (2017) 039 [arXiv:1703.10418] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    W. Buchmüller, M. Dierigl and E. Dudas, Flux compactifications and naturalness, JHEP 08 (2018) 151 [arXiv:1804.07497] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    C.S. Lim, N. Maru and K. Hasegawa, Six Dimensional Gauge-Higgs Unification with an Extra Space S 2 and the Hierarchy Problem, J. Phys. Soc. Jap. 77 (2008) 074101 [hep-th/0605180] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsOsaka City UniversityOsakaJapan
  2. 2.Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP)Osaka City UniversityOsakaJapan

Personalised recommendations