Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

  • The MoEDAL collaboration
  • B. Acharya
  • J. Alexandre
  • K. Bendtz
  • P. Benes
  • J. Bernabéu
  • M. Campbell
  • S. Cecchini
  • J. Chwastowski
  • A. Chatterjee
  • M. de Montigny
  • D. Derendarz
  • A. De Roeck
  • J. R. Ellis
  • M. Fairbairn
  • D. Felea
  • M. Frank
  • D. Frekers
  • C. Garcia
  • G. Giacomelli
  • D. Hasegan
  • M. Kalliokoski
  • A. Katre
  • D.-W. Kim
  • M. G. L. King
  • K. Kinoshita
  • D.H. Lacarrère
  • S. C. Lee
  • C. Leroy
  • A. Lionti
  • A. Margiotta
  • N. Mauri
  • N. E. Mavromatos
  • P. Mermod
  • D. Milstead
  • V. A. Mitsou
  • R. Orava
  • B. Parker
  • L. Pasqualini
  • L. Patrizii
  • G. E. Păvălas
  • J. L. Pinfold
  • M. Platkevič
  • V. Popa
  • M. Pozzato
  • S. Pospisil
  • A. Rajantie
  • Z. Sahnoun
  • M. Sakellariadou
  • S. Sarkar
  • G. Semenoff
  • G. Sirri
  • K. Sliwa
  • R. Soluk
  • M. Spurio
  • Y. N. Srivastava
  • R. Staszewski
  • M. Suk
  • J. Swain
  • M. Tenti
  • V. Togo
  • M. Trzebinski
  • J. A. Tuszynski
  • V. Vento
  • O. Vives
  • Z. Vykydal
  • T. Whyntie
  • A. Widom
  • G. Willems
  • J. H. Yoon
Open Access
Regular Article - Experimental Physics

Abstract

The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb–1. No magnetic charge exceeding 0:5gD (where gD is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1gD ≤ |g| ≤ 6gD, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1gD ≤ |g| ≤ 4gD. Under the assumption of Drell-Yan cross sections, mass limits are derived for |g| = 2gD and |g| = 3gD for the first time at the LHC, surpassing the results from previous collider experiments.

Keywords

Exotics Hadron-Hadron scattering (experiments) Particle and resonance production 

References

  1. [1]
    J.C. Maxwell, A dynamical theory of the electromagnetic field, Phil. Trans. R. Soc. Lond. 155 (1865) 459.CrossRefGoogle Scholar
  2. [2]
    P. Curie, Sur la possibilité d’existence de la conductibilité magnétique et du magnétisme libre (on the possibility of magnetic conductivity and free magnetism), Séances de la Société Française de Physique (Paris) (1894) 76.Google Scholar
  3. [3]
    P.A.M. Dirac, Quantized Singularities in the Electromagnetic Field, Proc. Roy. Soc. Lond. A 133 (1931)60 [INSPIRE].
  4. [4]
    G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].
  5. [5]
    A.M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [INSPIRE].
  6. [6]
    Y.M. Cho and D. Maison, Monopoles in Weinberg-Salam model, Phys. Lett. B 391 (1997) 360 [hep-th/9601028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    T.W. Kirkman and C.K. Zachos, Asymptotic Analysis of the Monopole Structure, Phys. Rev. D 24 (1981) 999 [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y.M. Cho, K. Kim and J.H. Yoon, Finite Energy Electroweak Dyon, Eur. Phys. J. C 75 (2015) 67 [arXiv:1305.1699] [INSPIRE].
  9. [9]
    J. Ellis, N.E. Mavromatos and T. You, The Price of an Electroweak Monopole, Phys. Lett. B 756 (2016) 29 [arXiv:1602.01745] [INSPIRE].
  10. [10]
    MoEDAL collaboration, B. Acharya et al., The Physics Programme Of The MoEDAL Experiment At The LHC, Int. J. Mod. Phys. A 29 (2014) 1430050 [arXiv:1405.7662] [INSPIRE].
  11. [11]
    J. Preskill, Magnetic monopoles, Ann. Rev. Nucl. Part. Sci. 34 (1984) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.S. Schwinger, Magnetic Charge and the Charge Quantization Condition, Phys. Rev. D 12 (1975) 3105 [INSPIRE].
  13. [13]
    S.P. Ahlen, Stopping Power Formula for Magnetic Monopoles, Phys. Rev. D 17 (1978) 229 [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.P. Ahlen, Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles, Rev. Mod. Phys. 52 (1980) 121 [Erratum ibid. 52 (1980) 653] [INSPIRE].
  15. [15]
    S.p. Ahlen and K. Kinoshita, Calculation of the stopping power of very low velocity magnetic monopoles, Phys. Rev. D 26 (1982) 2347 [INSPIRE].
  16. [16]
    M. Fairbairn, A.C. Kraan, D.A. Milstead, T. Sjöstrand, P.Z. Skands and T. Sloan, Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].
  17. [17]
    L. Patrizii and M. Spurio, Status of Searches for Magnetic Monopoles, Ann. Rev. Nucl. Part. Sci. 65 (2015) 279 [arXiv:1510.07125] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Burdin, M. Fairbairn, P. Mermod, D. Milstead, J. Pinfold, T. Sloan and W. Taylor, Non-collider searches for stable massive particles, Phys. Rept. 582 (2015) 1 [arXiv:1410.1374] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Kittel and A. Manoliu, Interaction of a magnetic monopole with a ferromagnetic domain, Phys. Rev. B 15 (1977) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Goto, H.H. Kolm and K.W. Ford, Search for Ferromagnetically Trapped Magnetic Monopoles of Cosmic-Ray Origin, Phys. Rev. 132 (1963) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.A. Milton, Theoretical and experimental status of magnetic monopoles, Rept. Prog. Phys. 69 (2006) 1637 [hep-ex/0602040] [INSPIRE].
  22. [22]
    OPAL collaboration, G. Abbiendi et al., Search for Dirac magnetic monopoles in e + e collisions with the OPAL detector at LEP2, Phys. Lett. B 663 (2008) 37 [arXiv:0707.0404] [INSPIRE].
  23. [23]
    CDF collaboration, A. Abulencia et al., Direct search for Dirac magnetic monopoles in pp collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 96 (2006) 201801 [hep-ex/0509015] [INSPIRE].
  24. [24]
    M. Bertani et al., Search for Magnetic Monopoles at the Tevatron Collider, Europhys. Lett. 12 (1990) 613 [INSPIRE].
  25. [25]
    K. Kinoshita et al., Search for highly ionizing particles in e + e annihilations at \( \sqrt{s}=91.1 \) GeV, Phys. Rev. D 46 (1992)881 [INSPIRE].
  26. [26]
    J.L. Pinfold, R. Du, K. Kinoshita, B. Lorazo, M. Regimbald and B. Price, A Search for highly ionizing particles produced at the OPAL intersection point at LEP, Phys. Lett. B 316 (1993)407 [INSPIRE].
  27. [27]
    TASSO collaboration, W. Braunschweig et al., A Search for Particles With Magnetic Charge Produced in e + e Annihilations at \( \sqrt{s}=35 \) -GeV, Z. Phys. C 38 (1988) 543 [INSPIRE].
  28. [28]
    J.L. Pinfold et al., Detector for magnetic monopoles at OPAL, Nucl. Instrum. Meth. A 302 (1991) 434 [INSPIRE].
  29. [29]
    H1 collaboration, A. Aktas et al., A Direct search for stable magnetic monopoles produced in positron-proton collisions at HERA, Eur. Phys. J. C 41 (2005) 133 [hep-ex/0501039] [INSPIRE].
  30. [30]
    G.R. Kalbfleisch, K.A. Milton, M.G. Strauss, L.P. Gamberg, E.H. Smith and W. Luo, Improved experimental limits on the production of magnetic monopoles, Phys. Rev. Lett. 85 (2000) 5292 [hep-ex/0005005] [INSPIRE].
  31. [31]
    G.R. Kalbfleisch, W. Luo, K.A. Milton, E.H. Smith and M.G. Strauss, Limits on production of magnetic monopoles utilizing samples from the D0 and CDF detectors at the Tevatron, Phys. Rev. D 69 (2004) 052002 [hep-ex/0306045] [INSPIRE].
  32. [32]
    A. De Roeck, A. Katre, P. Mermod, D. Milstead and T. Sloan, Sensitivity of LHC Experiments to Exotic Highly Ionising Particles, Eur. Phys. J. C 72 (2012) 1985 [arXiv:1112.2999] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    ATLAS collaboration, Search for magnetic monopoles in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 109 (2012) 261803 [arXiv:1207.6411] [INSPIRE].
  34. [34]
    ATLAS collaboration, Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052009 [arXiv:1509.08059] [INSPIRE].
  35. [35]
    MoEDAL collaboration, Technical Design Report of the MoEDAL Experiment, CERN-LHCC-2009-006, MOEDAL-TDR-001 (2009).
  36. [36]
    LHCb collaboration, The LHCb Detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
  37. [37]
    J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    LHCb collaboration, Precision luminosity measurements at LHCb, 2014 JINST 9 P12005 [arXiv:1410.0149] [INSPIRE].
  39. [39]
    M.D. Joergensen et al., Searching for magnetic monopoles trapped in accelerator material at the Large Hadron Collider, arXiv:1206.6793 [INSPIRE].
  40. [40]
    J. Clarke and A.I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, Wiley (2006).Google Scholar
  41. [41]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].
  44. [44]
    J. Derkaoui et al., Energy losses of magnetic monopoles and of dyons in the earth, Astropart. Phys. 9 (1998) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Cecchini, L. Patrizii, Z. Sahnoun, G. Sirri and V. Togo, Energy Losses of Magnetic Monopoles in Aluminum, Iron and Copper, arXiv:1606.01220 [INSPIRE].
  46. [46]
    N. Craigie, G. Giacomelli, W. Nahm and Q. Shafi, Theory and Detection of Magnetic Monopoles in Gauge Theories, World Scientific (1986).Google Scholar
  47. [47]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  48. [48]
    L.P. Gamberg, G.R. Kalbfleisch and K.A. Milton, Direct and indirect searches for low mass magnetic monopoles, Found. Phys. 30 (2000) 543 [hep-ph/9906526] [INSPIRE].
  49. [49]
    C.J. Goebel, Binding of nuclei to monopoles, in Monopole ’83, J.L. Stone ed., Plenum (1984), p. 333.Google Scholar
  50. [50]
    L. Bracci and G. Fiorentini, Interactions of Magnetic Monopoles With Nuclei and Atoms: Formation of Bound States and Phenomenological Consequences, Nucl. Phys. B 232 (1984) 236 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Olaussen and R. Sollie, Form-factor effects on nucleus-magnetic monopole binding, Nucl. Phys. B 255 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    ATLAS collaboration, Search for Massive Long-lived Highly Ionising Particles with the ATLAS Detector at the LHC, Phys. Lett. B 698 (2011) 353 [arXiv:1102.0459] [INSPIRE].
  53. [53]
    I. Bertram, G.L. Landsberg, J. Linnemann, R. Partridge, M. Paterno and H.B. Prosper, A Recipe for the construction of confidence limits, FERMILAB-TM-2104 (2000).Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • The MoEDAL collaboration
  • B. Acharya
    • 1
    • 2
  • J. Alexandre
    • 1
  • K. Bendtz
    • 25
  • P. Benes
    • 14
  • J. Bernabéu
    • 3
  • M. Campbell
    • 4
  • S. Cecchini
    • 26
  • J. Chwastowski
    • 8
  • A. Chatterjee
    • 15
  • M. de Montigny
    • 9
  • D. Derendarz
    • 8
  • A. De Roeck
    • 4
  • J. R. Ellis
    • 1
    • 5
  • M. Fairbairn
    • 1
  • D. Felea
    • 10
  • M. Frank
    • 11
  • D. Frekers
    • 13
  • C. Garcia
    • 3
  • G. Giacomelli
    • 7
  • D. Hasegan
    • 11
  • M. Kalliokoski
    • 6
  • A. Katre
    • 15
  • D.-W. Kim
    • 16
  • M. G. L. King
    • 3
  • K. Kinoshita
    • 17
  • D.H. Lacarrère
    • 4
  • S. C. Lee
    • 16
  • C. Leroy
    • 12
  • A. Lionti
    • 15
  • A. Margiotta
    • 7
  • N. Mauri
    • 26
  • N. E. Mavromatos
    • 1
  • P. Mermod
    • 15
  • D. Milstead
    • 25
  • V. A. Mitsou
    • 3
  • R. Orava
    • 18
  • B. Parker
    • 28
  • L. Pasqualini
    • 7
  • L. Patrizii
    • 26
  • G. E. Păvălas
    • 10
  • J. L. Pinfold
    • 9
  • M. Platkevič
    • 14
  • V. Popa
    • 10
  • M. Pozzato
    • 26
  • S. Pospisil
    • 14
  • A. Rajantie
    • 19
  • Z. Sahnoun
    • 26
    • 20
  • M. Sakellariadou
    • 1
  • S. Sarkar
    • 1
  • G. Semenoff
    • 21
  • G. Sirri
    • 26
  • K. Sliwa
    • 22
  • R. Soluk
    • 9
  • M. Spurio
    • 7
  • Y. N. Srivastava
    • 23
  • R. Staszewski
    • 8
  • M. Suk
    • 14
  • J. Swain
    • 23
  • M. Tenti
    • 27
  • V. Togo
    • 26
  • M. Trzebinski
    • 8
  • J. A. Tuszynski
    • 9
  • V. Vento
    • 3
  • O. Vives
    • 3
  • Z. Vykydal
    • 14
  • T. Whyntie
    • 28
    • 29
  • A. Widom
    • 23
  • G. Willems
    • 13
  • J. H. Yoon
    • 24
  1. 1.Theoretical Particle Physics & Cosmology Group, Physics Dept.King’s College LondonLondonUK
  2. 2.International Centre for Theoretical PhysicsTriesteItaly
  3. 3.IFIC, Universitat de València — CSICValenciaSpain
  4. 4.Experimental Physics Department, CERNGenevaSwitzerland
  5. 5.Theoretical Physics Department, CERNGenevaSwitzerland
  6. 6.Beams Department, CERNGenevaSwitzerland
  7. 7.INFN, section of Bologna & Department of Physics & AstronomyUniversity of BolognaBolognaItaly
  8. 8.Institute of Nuclear Physics Polish Academy of SciencesCracowPoland
  9. 9.Physics DepartmentUniversity of AlbertaEdmontonCanada
  10. 10.Institute of Space ScienceBucharest — MăgureleRomania
  11. 11.Department of PhysicsConcordia UniversityMontréalCanada
  12. 12.Département de physiqueUniversité de MontréalQuébecCanada
  13. 13.Physics DepartmentUniversity of MuensterMuensterGermany
  14. 14.IEAP, Czech Technical University in PraguePragueCzech Republic
  15. 15.Section de PhysiqueUniversité de GenèveGenevaSwitzerland
  16. 16.Physics DepartmentGangneung-Wonju National UniversityGangneungSouth Korea
  17. 17.Physics DepartmentUniversity of CincinnatiCincinnatiUSA
  18. 18.Physics DepartmentUniversity of HelsinkiHelsinkiFinland
  19. 19.Department of PhysicsImperial College LondonLondonUK
  20. 20.Centre for Astronomy, Astrophysics and GeophysicsAlgiersAlgeria
  21. 21.Department of PhysicsUniversity of British ColumbiaVancouverCanada
  22. 22.Department of Physics and AstronomyTufts UniversityMedfordUSA
  23. 23.Physics DepartmentNortheastern UniversityBostonUSA
  24. 24.Physics DepartmentKonkuk UniversitySeoulSouth Korea
  25. 25.Physics DepartmentStockholm UniversityStockholmSweden
  26. 26.INFN, section of BolognaBolognaItaly
  27. 27.INFN, CNAFBolognaItaly
  28. 28.The Institute for Research in SchoolsCanterburyEngland
  29. 29.Queen Mary University of LondonLondonEngland

Personalised recommendations