Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Signature change of the metric in CDT quantum gravity?

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 07 August 2015
  • volume 2015, Article number: 33 (2015)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Signature change of the metric in CDT quantum gravity?
Download PDF
  • J. Ambjørn1,2,
  • D. N. Coumbe2,
  • J. Gizbert-Studnicki2 &
  • …
  • J. Jurkiewicz2 
  • 388 Accesses

  • 25 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We study the effective transfer matrix within the semiclassical and bifurcation phases of CDT quantum gravity. We find that for sufficiently large lattice volumes the kinetic term of the effective transfer matrix has a different sign in each of the two phases. We argue that this sign change can be viewed as a Wick rotation of the metric. We discuss the likely microscopic mechanism responsible for the bifurcation phase transition, and propose an order parameter that can potentially be used to determine the precise location and order of the transition. Using the effective transfer matrix we approximately locate the position of the bifurcation transition in some region of coupling constant space, allowing us to present an updated version of the CDT phase diagram.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.F. Donoghue, Introduction to the effective field theory description of gravity, gr-qc/9512024.

  2. G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincaré Phys. Theor. A 20 (1974) 69 [INSPIRE].

  3. M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Donoghue, Perturbative dynamics of quantum general relativity, gr-qc/9712070 [INSPIRE].

  5. S. Weinberg, General relativity, an Einstein centenary survey, Cambridge University Press, Cambridge U.K. (1997).

    Google Scholar 

  6. M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f (R)-gravity, Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].

    ADS  Google Scholar 

  13. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100 (2008) 091304 [arXiv:0712.2485] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev. D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. H.W. Hamber, Quantum gravity on the lattice, Gen. Rel. Grav. 41 (2009) 817 [arXiv:0901.0964] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J. Ambjorn, B. Durhuus and T. Jonsson, Quantum geometry. A statistical field theory approach, Camrbidge University Press, Cambridge U.K. (1997).

    Book  MATH  Google Scholar 

  17. J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett. 107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].

    Article  ADS  Google Scholar 

  18. T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Ambjørn, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, The transfer matrix in four-dimensional CDT, JHEP 09 (2012) 017 [arXiv:1205.3791] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Ambjørn, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, The effective action in 4-dim CDT. The transfer matrix approach, JHEP 06 (2014) 034 [arXiv:1403.5940] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Hartle and S. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. D.N. Coumbe, A hypothesis on the nature of time, arXiv:1502.04320 [INSPIRE].

  23. J.H. Cooperman, Scale-dependent homogeneity measures for causal dynamical triangulations, Phys. Rev. D 90 (2014) 124053 [arXiv:1410.0632] [INSPIRE].

    ADS  Google Scholar 

  24. J Gizbert-Studnicki, The effective action in four-dimensional CDT, Ph.D. thesis, Jagiellonian University, Poland (2014).

  25. T. Cailleteau, J. Mielczarek, A. Barrau and J. Grain, Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology, Class. Quant. Grav. 29 (2012) 095010 [arXiv:1111.3535] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. J. Mielczarek, Signature change in loop quantum cosmology, Springer Proc. Phys. 157 (2014) 555 [arXiv:1207.4657] [INSPIRE].

    Article  Google Scholar 

  27. A. Barrau et al., Anomaly-free cosmological perturbations in effective canonical quantum gravity, JCAP 05 (2015) 051 [arXiv:1404.1018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100, Copenhagen, Denmark

    J. Ambjørn

  2. Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. prof. Stanislawa Lojasiewicza 11, Krakow, PL 30-348, Poland

    J. Ambjørn, D. N. Coumbe, J. Gizbert-Studnicki & J. Jurkiewicz

Authors
  1. J. Ambjørn
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. D. N. Coumbe
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. Gizbert-Studnicki
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. J. Jurkiewicz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J. Gizbert-Studnicki.

Additional information

ArXiv ePrint: 1503.08580

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambjørn, J., Coumbe, D.N., Gizbert-Studnicki, J. et al. Signature change of the metric in CDT quantum gravity?. J. High Energ. Phys. 2015, 33 (2015). https://doi.org/10.1007/JHEP08(2015)033

Download citation

  • Received: 02 April 2015

  • Revised: 23 June 2015

  • Accepted: 14 July 2015

  • Published: 07 August 2015

  • DOI: https://doi.org/10.1007/JHEP08(2015)033

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Models of Quantum Gravity
  • Lattice Models of Gravity
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature