Abstract
We study the effective transfer matrix within the semiclassical and bifurcation phases of CDT quantum gravity. We find that for sufficiently large lattice volumes the kinetic term of the effective transfer matrix has a different sign in each of the two phases. We argue that this sign change can be viewed as a Wick rotation of the metric. We discuss the likely microscopic mechanism responsible for the bifurcation phase transition, and propose an order parameter that can potentially be used to determine the precise location and order of the transition. Using the effective transfer matrix we approximately locate the position of the bifurcation transition in some region of coupling constant space, allowing us to present an updated version of the CDT phase diagram.
References
J.F. Donoghue, Introduction to the effective field theory description of gravity, gr-qc/9512024.
G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincaré Phys. Theor. A 20 (1974) 69 [INSPIRE].
M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].
J. Donoghue, Perturbative dynamics of quantum general relativity, gr-qc/9712070 [INSPIRE].
S. Weinberg, General relativity, an Einstein centenary survey, Cambridge University Press, Cambridge U.K. (1997).
M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].
O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].
D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].
A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f (R)-gravity, Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].
A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].
D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].
J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100 (2008) 091304 [arXiv:0712.2485] [INSPIRE].
J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev. D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].
H.W. Hamber, Quantum gravity on the lattice, Gen. Rel. Grav. 41 (2009) 817 [arXiv:0901.0964] [INSPIRE].
J. Ambjorn, B. Durhuus and T. Jonsson, Quantum geometry. A statistical field theory approach, Camrbidge University Press, Cambridge U.K. (1997).
J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett. 107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].
T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].
J. Ambjørn, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, The transfer matrix in four-dimensional CDT, JHEP 09 (2012) 017 [arXiv:1205.3791] [INSPIRE].
J. Ambjørn, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, The effective action in 4-dim CDT. The transfer matrix approach, JHEP 06 (2014) 034 [arXiv:1403.5940] [INSPIRE].
J. Hartle and S. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].
D.N. Coumbe, A hypothesis on the nature of time, arXiv:1502.04320 [INSPIRE].
J.H. Cooperman, Scale-dependent homogeneity measures for causal dynamical triangulations, Phys. Rev. D 90 (2014) 124053 [arXiv:1410.0632] [INSPIRE].
J Gizbert-Studnicki, The effective action in four-dimensional CDT, Ph.D. thesis, Jagiellonian University, Poland (2014).
T. Cailleteau, J. Mielczarek, A. Barrau and J. Grain, Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology, Class. Quant. Grav. 29 (2012) 095010 [arXiv:1111.3535] [INSPIRE].
J. Mielczarek, Signature change in loop quantum cosmology, Springer Proc. Phys. 157 (2014) 555 [arXiv:1207.4657] [INSPIRE].
A. Barrau et al., Anomaly-free cosmological perturbations in effective canonical quantum gravity, JCAP 05 (2015) 051 [arXiv:1404.1018] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1503.08580
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ambjørn, J., Coumbe, D.N., Gizbert-Studnicki, J. et al. Signature change of the metric in CDT quantum gravity?. J. High Energ. Phys. 2015, 33 (2015). https://doi.org/10.1007/JHEP08(2015)033
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2015)033
Keywords
- Models of Quantum Gravity
- Lattice Models of Gravity