Abstract
The all-loop integrand for scattering amplitudes in planar \( \mathcal{N}=4 \) SYM is determined by an “amplitude form” with logarithmic singularities on the boundary of the amplituhedron. In this note we provide strong evidence for a new striking property of the superamplitude, which we conjecture to be true to all loop orders: the amplitude form is positive when evaluated inside the amplituhedron. The statement is sensibly formulated thanks to the natural “bosonization” of the superamplitude associated with the amplituhedron geometry. However this positivity is not manifest in any of the current approaches to scattering amplitudes, and in particular not in the cellulations of the amplituhedron related to on-shell diagrams and the positive grassmannian. The surprising positivity of the form suggests the existence of a “dual amplituhedron” formulation where this feature would be made obvious. We also suggest that the positivity is associated with an extended picture of amplituhedron geometry, with the amplituhedron sitting inside a co-dimension one surface separating “legal” and “illegal” local singularities of the amplitude. We illustrate this in several simple examples, obtaining new expressions for amplitudes not associated with any triangulations, but following in a more invariant manner from a global view of the positive geometry.
References
N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP 10 (2014) 30 [arXiv:1312.2007] [INSPIRE].
N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].
S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP 03 (2015) 128 [arXiv:1408.3410] [INSPIRE].
Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP 02 (2015) 065 [arXiv:1408.2459] [INSPIRE].
T. Lam, Amplituhedron cells and Stanley symmetric functions, arXiv:1408.5531 [INSPIRE].
N. Arkani-Hamed et al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605 [INSPIRE].
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].
R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].
J.L. Bourjaily, Efficient tree-amplitudes in N = 4: automatic BCFW recursion in Mathematica, arXiv:1011.2447 [INSPIRE].
J.L. Bourjaily, Positroids, plabic graphs and scattering amplitudes in Mathematica, arXiv:1212.6974 [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
M. Bullimore, L.J. Mason and D. Skinner, MHV diagrams in momentum twistor space, JHEP 12 (2010) 032 [arXiv:1009.1854] [INSPIRE].
L. Mason, private communication.
J. Trnka, unpublished notes.
Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].
Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
J.L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin and A. Volovich, The soft-collinear bootstrap: N = 4 Yang-Mills amplitudes at six and seven loops, JHEP 03 (2012) 032 [arXiv:1112.6432] [INSPIRE].
Z. Bern, J.J. Carrasco, L.J. Dixon, M.R. Douglas, M. von Hippel and H. Johansson, D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops, Phys. Rev. D 87 (2013) 025018 [arXiv:1210.7709] [INSPIRE].
B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, Nucl. Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].
J.L. Bourjaily, S. Caron-Huot and J. Trnka, Dual-conformal regularization of infrared loop divergences and the chiral box expansion, JHEP 01 (2015) 001 [arXiv:1303.4734] [INSPIRE].
H. Elvang, D.Z. Freedman and M. Kiermaier, Dual conformal symmetry of 1-loop NMHV amplitudes in N = 4 SYM theory, JHEP 03 (2010) 075 [arXiv:0905.4379] [INSPIRE].
L.J. Dixon, M. von Hippel J. Trnka, Positivity of ratio functions from amplituhedron, in preparation.
L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].
L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1412.8478
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Arkani-Hamed, N., Hodges, A. & Trnka, J. Positive amplitudes in the amplituhedron. J. High Energ. Phys. 2015, 30 (2015). https://doi.org/10.1007/JHEP08(2015)030
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2015)030
Keywords
- Supersymmetric gauge theory
- Scattering Amplitudes