Gauge invariant 1PI effective superstring field theory: inclusion of the Ramond sector

Open Access
Regular Article - Theoretical Physics


We construct off-shell amplitudes in heterotic and type II string theories in-volving arbitrary combination of Ramond and Neveu-Schwarz sector external states. We also construct the equations of motion of a gauge invariant 1PI effective field theory which reproduces these off-shell amplitudes. Using this construction we prove that the renormalized physical masses do not depend on the choice of local coordinate system and locations of picture changing operators used in defining the off-shell amplitudes. We also use this formalism to examine the conditions under which space-time supersymmetry is unbroken in the quantum theory.


Superstrings and Heterotic Strings String Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Sen, Gauge Invariant 1PI Effective Action for Superstring Field Theory, JHEP 06 (2015) 022 [arXiv:1411.7478] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    E. Witten, Interacting Field Theory of Open Superstrings, Nucl. Phys. B 276 (1986) 291 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  5. [5]
    N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047 [hep-th/0109100] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    Y. Okawa and B. Zwiebach, Heterotic string field theory, JHEP 07 (2004) 042 [hep-th/0406212] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    H. Kunitomo, The Ramond Sector of Heterotic String Field Theory, PTEP 2014 (2014) 043B01 [arXiv:1312.7197] [INSPIRE].MATHGoogle Scholar
  9. [9]
    H. Kunitomo, Symmetries and Feynman rules for the Ramond sector in open superstring field theory, PTEP 2015 (2015) 033B11 [arXiv:1412.5281] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    A. Sen, Off-shell Amplitudes in Superstring Theory, Fortsch. Phys. 63 (2015) 149 [arXiv:1408.0571] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  11. [11]
    N. Berkovits and B. Zwiebach, On the picture dependence of Ramond-Ramond cohomology, Nucl. Phys. B 523 (1998) 311 [hep-th/9711087] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  12. [12]
    T. Erler, S. Konopka and I. Sachs, NS-NS Sector of Closed Superstring Field Theory, JHEP 08 (2014) 158 [arXiv:1403.0940] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  13. [13]
    R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: Special States, JHEP 07 (2014) 058 [arXiv:1311.1257] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  14. [14]
    R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: General States, JHEP 07 (2014) 062 [arXiv:1401.7014] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  15. [15]
    E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].
  16. [16]
    E. Witten, More On Superstring Perturbation Theory, arXiv:1304.2832 [INSPIRE].
  17. [17]
    A. Belopolsky, De Rham cohomology of the supermanifolds and superstring BRST cohomology, Phys. Lett. B 403 (1997) 47 [hep-th/9609220] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    A. Belopolsky, New geometrical approach to superstrings, hep-th/9703183 [INSPIRE].
  19. [19]
    A. Belopolsky, Picture changing operators in supergeometry and superstring theory, hep-th/9706033 [INSPIRE].
  20. [20]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 1. Main formulas, Phys. Lett. B 529 (2002) 241 [hep-th/0110247] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  21. [21]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 2. The chiral measure on moduli space, Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  22. [22]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 3. Slice independence and absence of ambiguities, Nucl. Phys. B 636 (2002) 61 [hep-th/0111016] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  23. [23]
    E. D’Hoker and D.H. Phong, Two loop superstrings. 4. The cosmological constant and modular forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  24. [24]
    E. D’Hoker and D.H. Phong, Two-loop superstrings. 5. Gauge slice independence of the N-point function, Nucl. Phys. B 715 (2005) 91 [hep-th/0501196] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  25. [25]
    E. D’Hoker and D.H. Phong, Two-loop superstrings. 6. Non-renormalization theorems and the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].CrossRefMATHADSGoogle Scholar
  26. [26]
    E. D’Hoker and D.H. Phong, Two-Loop Superstrings. 7. Cohomology of Chiral Amplitudes, Nucl. Phys. B 804 (2008) 421 [arXiv:0711.4314] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  27. [27]
    E. Witten, Notes On Supermanifolds and Integration, arXiv:1209.2199 [INSPIRE].
  28. [28]
    E. Witten, Notes On Super Riemann Surfaces And Their Moduli, arXiv:1209.2459 [INSPIRE].
  29. [29]
    E. Witten, Notes On Holomorphic String And Superstring Theory Measures Of Low Genus, arXiv:1306.3621 [INSPIRE].
  30. [30]
    R. Donagi and E. Witten, Supermoduli Space Is Not Projected, arXiv:1304.7798 [INSPIRE].
  31. [31]
    R. Donagi and E. Witten, Super Atiyah classes and obstructions to splitting of supermoduli space, arXiv:1404.6257 [INSPIRE].
  32. [32]
    E. D’Hoker and D.H. Phong, Two-loop vacuum energy for Calabi-Yau orbifold models, Nucl. Phys. B 877 (2013) 343 [arXiv:1307.1749] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  33. [33]
    E. D’Hoker, Topics in Two-Loop Superstring Perturbation Theory, arXiv:1403.5494 [INSPIRE].
  34. [34]
    T. Erler, S. Konopka and I. Sachs, Resolving Wittens superstring field theory, JHEP 04 (2014) 150 [arXiv:1312.2948] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  35. [35]
    H. Matsunaga, Nonlinear gauge invariance and WZW-like action for NS-NS superstring field theory, arXiv:1407.8485 [INSPIRE].
  36. [36]
    E.P. Verlinde and H.L. Verlinde, Multiloop Calculations in Covariant Superstring Theory, Phys. Lett. B 192 (1987) 95 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    P.C. Nelson, Covariant Insertion of General Vertex Operators, Phys. Rev. Lett. 62 (1989) 993 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    O. Lechtenfeld, Superconformal ghost correlations on Riemann surfaces, Phys. Lett. B 232 (1989) 193 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    A. Morozov, Straightforward proof of Lechtenfelds formula for β, γ-correlator, Phys. Lett. B 234 (1990) 15 [Yad. Fiz. 51 (1990) 301] [Sov. J. Nucl. Phys. 51 (1990) 190] [INSPIRE].
  41. [41]
    A. Berera, Unitary string amplitudes, Nucl. Phys. B 411 (1994) 157 [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  42. [42]
    E. Witten, The Feynman iϵ in String Theory, JHEP 04 (2015) 055 [arXiv:1307.5124] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    H. Hata and B. Zwiebach, Developing the covariant Batalin-Vilkovisky approach to string theory, Annals Phys. 229 (1994) 177 [hep-th/9301097] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  44. [44]
    R. Pius, A. Rudra and A. Sen, String Perturbation Theory Around Dynamically Shifted Vacuum, JHEP 10 (2014) 70 [arXiv:1404.6254] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteAllahabadIndia

Personalised recommendations