3.5 keV X-ray line signal from dark matter decay in local U(1)BL extension of Zee-Babu model

  • Seungwon Baek
Open Access
Regular Article - Theoretical Physics


We consider a local U(1)BL extension of Zee-Babu model to explain the recently observed 3.5 keV X-ray line signal. The model has three Standard model (SM)-singlet Dirac fermions with different U(1)BL charges. A complex scalar field charged under U(1)BL is introduced to break the U(1)BL symmetry. After U(1)BL symmetry breaking a remnant discrete symmetry stabilizes the lightest state of the Dirac fermions, which can be a stable dark matter (DM). The second lightest state, if mass splitting with the stable DM is about 3.5 keV, decays dominantly to the stable DM and 3.5 keV photon through two-loop diagrams, explaining the X-ray line signal. Two-loop suppression of the decay amplitude makes its lifetime much longer than the age of the universe and it can be a decaying DM candidate in large parameter region. We also introduce a real scalar field which is singlet under both the SM and U(1)BL and can explain the current relic abundance of the Dirac fermionic DMs. If the mixing with the SM Higgs boson is small, it does not contribute to DM direct detection. The main contribution to the scattering of DM off atomic nuclei comes from the exchange of U(1)BL gauge boson, Z, and is suppressed below current experimental bound when Z′ mass is heavy (≳10 TeV). If the singlet scalar mass is about 0.1–10 MeV, DM self-interaction can be large enough to solve small scale structure problems in simulations with the cold DM, such as, the core-vs-cusp problem and too-big-to-fail problem.


Higgs Physics Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Bulbul et al., Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified line in X-ray spectra of the andromeda galaxy and Perseus galaxy cluster, Phys. Rev. Lett. 113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.T. Frandsen, F. Sannino, I.M. Shoemaker and O. Svendsen, X-ray lines from dark matter: the good, the bad and the unlikely, JCAP 05 (2014) 033 [arXiv:1403.1570] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Ishida, K.S. Jeong and F. Takahashi, 7 keV sterile neutrino dark matter from split flavor mechanism, Phys. Lett. B 732 (2014) 196 [arXiv:1402.5837] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D.P. Finkbeiner and N. Weiner, An X-ray line from exciting dark matter, arXiv:1402.6671 [INSPIRE].
  6. [6]
    T. Higaki, K.S. Jeong and F. Takahashi, The 7 keV axion dark matter and the X-ray line signal, Phys. Lett. B 733 (2014) 25 [arXiv:1402.6965] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Jaeckel, J. Redondo and A. Ringwald, 3.55 keV hint for decaying axionlike particle dark matter, Phys. Rev. D 89 (2014) 103511 [arXiv:1402.7335] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H.M. Lee, S.C. Park and W.-I. Park, Cluster X-ray line at 3.5 keV from axion-like dark matter, Eur. Phys. J. C 74 (2014) 3062 [arXiv:1403.0865] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Krall, M. Reece and T. Roxlo, Effective field theory and keV lines from dark matter, JCAP 09 (2014) 007 [arXiv:1403.1240] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.-C. Park, S.C. Park and K. Kong, X-ray line signal from 7 keV axino dark matter decay, Phys. Lett. B 733 (2014) 217 [arXiv:1403.1536] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K.-Y. Choi and O. Seto, X-ray line signal from decaying axino warm dark matter, Phys. Lett. B 735 (2014) 92 [arXiv:1403.1782] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Baek and H. Okada, 7 keV dark matter as X-ray line signal in radiative neutrino model, arXiv:1403.1710 [INSPIRE].
  13. [13]
    M. Cicoli, J.P. Conlon, M.C.D. Marsh and M. Rummel, 3.55 keV photon line and its morphology from a 3.55 keV axionlike particle line, Phys. Rev. D 90 (2014) 023540 [arXiv:1403.2370] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Bezrukov and D. Gorbunov, Relic gravity waves and 7 keV dark matter from a GeV scale inflaton, Phys. Lett. B 736 (2014) 494 [arXiv:1403.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Kolda and J. Unwin, X-ray lines from R-parity violating decays of keV sparticles, Phys. Rev. D 90 (2014) 023535 [arXiv:1403.5580] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Allahverdi, B. Dutta and Y. Gao, keV photon emission from light nonthermal dark matter, Phys. Rev. D 89 (2014) 127305 [arXiv:1403.5717] [INSPIRE].ADSGoogle Scholar
  17. [17]
    N.E. Bomark and L. Roszkowski, 3.5 keV x-ray line from decaying gravitino dark matter, Phys. Rev. D 90 (2014) 011701 [arXiv:1403.6503] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.P. Liew, Axino dark matter in light of an anomalous X-ray line, JCAP 05 (2014) 044 [arXiv:1403.6621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Z. Kang, P. Ko, T. Li and Y. Liu, Natural X-ray lines from the low scale supersymmetry breaking, Phys. Lett. B 742 (2015) 249 [arXiv:1403.7742] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.V. Demidov and D.S. Gorbunov, SUSY in the sky or a keV signature of sub-GeV gravitino dark matter, Phys. Rev. D 90 (2014) 035014 [arXiv:1404.1339] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F.S. Queiroz and K. Sinha, The poker face of the Majoron dark matter model: LUX to keV line, Phys. Lett. B 735 (2014) 69 [arXiv:1404.1400] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E. Dudas, L. Heurtier and Y. Mambrini, Generating X-ray lines from annihilating dark matter, Phys. Rev. D 90 (2014) 035002 [arXiv:1404.1927] [INSPIRE].ADSGoogle Scholar
  23. [23]
    K.S. Babu and R.N. Mohapatra, 7 keV scalar dark matter and the anomalous galactic X-ray spectrum, Phys. Rev. D 89 (2014) 115011 [arXiv:1404.2220] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K.P. Modak, 3.5 keV X-ray line signal from decay of right-handed neutrino due to transition magnetic moment, JHEP 03 (2015) 064 [arXiv:1404.3676] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Cline, Y. Farzan, Z. Liu, G.D. Moore and W. Xue, 3.5 keV x rays as the “21 cm lineof dark atoms and a link to light sterile neutrinos, Phys. Rev. D 89 (2014) 121302 [arXiv:1404.3729] [INSPIRE].ADSGoogle Scholar
  26. [26]
    H.M. Lee, Magnetic dark matter for the X-ray line at 3.55 keV, Phys. Lett. B 738 (2014) 118 [arXiv:1404.5446] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D.J. Robinson and Y. Tsai, Dynamical framework for KeV Dirac neutrino warm dark matter, Phys. Rev. D 90 (2014) 045030 [arXiv:1404.7118] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.P. Conlon and F.V. Day, 3.55 keV photon lines from axion to photon conversion in the Milky Way and M31, JCAP 11 (2014) 033 [arXiv:1404.7741] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Baek, P. Ko and W.-I. Park, The 3.5 keV X-ray line signature from annihilating and decaying dark matter in Weinberg model, arXiv:1405.3730 [INSPIRE].
  30. [30]
    S. Chakraborty, D.K. Ghosh and S. Roy, 7 keV sterile neutrino dark matter in U(1)-lepton number model, JHEP 10 (2014) 146 [arXiv:1405.6967] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Chen, Z. Liu and P. Nath, 3.5 keV galactic emission line as a signal from the hidden sector, Phys. Rev. D 90 (2014) 035009 [arXiv:1406.0687] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C.-Q. Geng, D. Huang and L.-H. Tsai, X-ray line from the dark transition electric dipole, JHEP 08 (2014) 086 [arXiv:1406.6481] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.-W. Chiang and T. Yamada, 3.5 keV X-ray line from nearly-degenerate WIMP dark matter decays, JHEP 09 (2014) 006 [arXiv:1407.0460] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B. Dutta, I. Gogoladze, R. Khalid and Q. Shafi, 3.5 keV X-ray line and R-parity conserving supersymmetry, JHEP 11 (2014) 018 [arXiv:1407.0863] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    H. Okada and Y. Orikasa, X-ray line in radiative neutrino model with global U(1) symmetry, Phys. Rev. D 90 (2014) 075023 [arXiv:1407.2543] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Y. Farzan and A.R. Akbarieh, Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters, JCAP 11 (2014) 015 [arXiv:1408.2950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    G. Faisel, S.-Y. Ho and J. Tandean, Exploring X-ray lines as scotogenic signals, Phys. Lett. B 738 (2014) 380 [arXiv:1408.5887] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Falkowski, Y. Hochberg and J.T. Ruderman, Displaced vertices from X-ray Lines, JHEP 11 (2014) 140 [arXiv:1409.2872] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    S. Patra and P. Pritimita, 7 keV sterile neutrino dark matter in extended seesaw framework, arXiv:1409.3656 [INSPIRE].
  40. [40]
    T.E. Jeltema and S. Profumo, Discovery of a 3.5 keV line in the Galactic Centre and a critical look at the origin of the line across astronomical targets, Mon. Not. Roy. Astron. Soc. 450 (2015) 2143 [arXiv:1408.1699] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Bulbul et al., Comment onDark matter searches going bananas: the contribution of potassium (and chlorine) to the 3.5 keV line”, arXiv:1409.4143 [INSPIRE].
  42. [42]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Lindner, D. Schmidt and T. Schwetz, Dark matter and neutrino masses from global U(1)BL symmetry breaking, Phys. Lett. B 705 (2011) 324 [arXiv:1105.4626] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Baek, P. Ko, H. Okada and E. Senaha, Can Zee-Babu model implemented with scalar dark matter explain both Fermi/LAT 130 GeV γ-ray excess and neutrino physics?, JHEP 09 (2014) 153 [arXiv:1209.1685] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    K.S. Babu, Model ofcalculableMajorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K.S. Babu and C. Macesanu, Two loop neutrino mass generation and its experimental consequences, Phys. Rev. D 67 (2003) 073010 [hep-ph/0212058] [INSPIRE].ADSGoogle Scholar
  48. [48]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    S. Baek, P. Ko and W.-I. Park, Singlet portal extensions of the standard seesaw models to a dark sector with local dark symmetry, JHEP 07 (2013) 013 [arXiv:1303.4280] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 10 (2014) 067 [arXiv:1311.1035] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Baek, P. Ko and W.-I. Park, Local Z 2 scalar dark matter model confronting galactic GeV-scale γ-ray, Phys. Lett. B 747 (2015) 255 [arXiv:1407.6588] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, int Proceedings of the 1979 Cargèse Institute on Recent Developments in Gauge Theories, G. ’t Hooft et al. eds., Plenum Press, New York, U.S.A. (1980).Google Scholar
  54. [54]
    D. Aristizabal Sierra and M. Hirsch, Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses, JHEP 12 (2006) 052 [hep-ph/0609307] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu Model at the CERN LHC and low energy experiments, Phys. Rev. D 77 (2008) 093013 [arXiv:0711.0483] [INSPIRE].ADSGoogle Scholar
  56. [56]
    D. Schmidt, T. Schwetz and H. Zhang, Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524 [arXiv:1402.2251] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria, The Zee-Babu model revisited in the light of new data, Nucl. Phys. B 885 (2014) 542 [arXiv:1402.4491] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  58. [58]
    H.N. Long and V.V. Vien, Neutrino mixing with nonzero θ 13 in Zee-Babu model, Int. J. Mod. Phys. A 29 (2014) 1450072 [arXiv:1405.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Hamaguchi, S. Shirai and T.T. Yanagida, Cosmic ray positron and electron excess from hidden-fermion dark matter decays, Phys. Lett. B 673 (2009) 247 [arXiv:0812.2374] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Zmixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].
  62. [62]
    J.-H. Huh, J.E. Kim, J.-C. Park and S.C. Park, Galactic 511 keV line from MeV milli-charged dark matter, Phys. Rev. D 77 (2008) 123503 [arXiv:0711.3528] [INSPIRE].ADSGoogle Scholar
  63. [63]
    R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029.
  64. [64]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  65. [65]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].ADSGoogle Scholar
  66. [66]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Choi, S. Jung and P. Ko, Implications of LHC data on 125 GeV Higgs-like boson for the Standard Model and its various extensions, JHEP 10 (2013) 225 [arXiv:1307.3948] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Baek, P. Ko and W.-I. Park, Invisible Higgs decay width vs. dark matter direct detection cross section in Higgs portal dark matter models, Phys. Rev. D 90 (2014) 055014 [arXiv:1405.3530] [INSPIRE].ADSGoogle Scholar
  69. [69]
    O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP 11 (2012) 116 [arXiv:1209.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
  73. [73]
    A. Arhrib and S. Baek, Two loop Barr-Zee type contributions to (g − 2)(muon) in the MSSM, Phys. Rev. D 65 (2002) 075002 [hep-ph/0104225] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029.
  75. [75]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  76. [76]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  77. [77]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].
  78. [78]
    CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].
  79. [79]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  80. [80]
    S. Baek and P. Ko, Phenomenology of U(1)(L μL τ) charged dark matter at PAMELA and colliders, JCAP 10 (2009) 011 [arXiv:0811.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Kawasaki, K. Kohri and T. Moroi, Hadronic decay of late-decaying particles and Big-Bang nucleosynthesis, Phys. Lett. B 625 (2005) 7 [astro-ph/0402490] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    K. Jedamzik, Big-Bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.School of Physics and Open KIAS CenterKIASSeoulSouth Korea

Personalised recommendations