Resonant Higgs boson pair production in the \( hh\to b\overline{b}\ WW\to b\overline{b}{\ell}^{+}\nu {\ell}^{-}\overline{\nu} \) decay channel

  • Víctor Martín Lozano
  • Jesús M. Moreno
  • Chan Beom Park
Open Access
Regular Article - Theoretical Physics


The addition of a scalar singlet provides one of the simplest extensions of the Standard Model. In this work we briefly review the latest constraints on the mass and mixing of the new Higgs boson and study its production and decay at the LHC. We mainly focus on double Higgs production in the \( hh\to b\overline{b}WW\to b\overline{b}{\ell}^{+}\nu {\ell}^{-}\overline{\nu} \) decay channel. This decay is found to be efficient in a region of masses of the heavy Higgs boson of 260-500 GeV, so it is complementary to the 4b channel, more efficient for Higgs bosons with masses greater than 500 GeV. We analyse this di-leptonic decay channel in detail using kinematic variables such as MT2 and the MT2-assisted on-shell reconstruction of invisible momenta. Using proper cuts, a significance of ∼ 3σ for 3000 fb−1 can be achieved at the 14 TeV LHC for m H = 260-400 GeV if the mixing is close to its present limit and BR(Hhh) ≈ 1. Smaller values for the mixing would require combining various decay channels in order to reach a similar significance. The complementarity among Hhh, HZZ andHWW channels is studied for arbitrary BR(Hhh) values.


Higgs Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the Higgs boson mass from the H → γγ and HZZ →4ℓ channels with the ATLAS detector using 25 fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].
  4. [4]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  5. [5]
    ATLAS, CMS collaborations, ATLAS + CMS Higgs combination of Run 1, in proceedings of The 50 th Rencontres de Moriond EW 2015, La Thuile, Aosta Valley, Italy 14-21 March 2015.Google Scholar
  6. [6]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [arXiv:1403.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Ashoorioon and T. Konstandin, Strong electroweak phase transitions without collider traces, JHEP 07 (2009) 086 [arXiv:0904.0353] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P.H. Damgaard, D. O’Connell, T.C. Petersen and A. Tranberg, Constraints on New Physics from Baryogenesis and Large Hadron Collider Data, Phys. Rev. Lett. 111 (2013) 221804 [arXiv:1305.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  14. [14]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP 11 (2012) 116 [arXiv:1209.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Fairbairn and R. Hogan, Singlet Fermionic Dark Matter and the Electroweak Phase Transition, JHEP 09 (2013) 022 [arXiv:1305.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    ATLAS collaboration, Search for a high-mass Higgs boson in the HWWlνlν decay channel with the ATLAS detector using 21 fb −1 of proton-proton collision data, ATLAS-CONF-2013-067 (2013).
  19. [19]
    CMS collaboration, Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC, Eur. Phys. J. C 73 (2013) 2469 [arXiv:1304.0213] [INSPIRE].
  20. [20]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  21. [21]
    CMS collaboration, Search for a standard model like Higgs boson in the decay channel HZZ + q qbar at CMS, CMS-PAS-HIG-12-024.
  22. [22]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4ℓ in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-002.
  23. [23]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003.
  24. [24]
    M. Bowen, Y. Cui and J.D. Wells, Narrow trans-TeV Higgs bosons and Hhh decays: Two LHC search paths for a hidden sector Higgs boson, JHEP 03 (2007) 036 [hep-ph/0701035] [INSPIRE].
  25. [25]
    M.J. Dolan, C. Englert and M. Spannowsky, New Physics in LHC Higgs boson pair production, Phys. Rev. D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev. D 89 (2014) 095031 [arXiv:1310.6035] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G.M. Pruna and T. Robens, Higgs singlet extension parameter space in the light of the LHC discovery, Phys. Rev. D 88 (2013) 115012 [arXiv:1303.1150] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Hill and J.J. van der Bij, Strongly interacting singlet-doublet Higgs model, Phys. Rev. D 36 (1987) 3463 [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.J.G. Veltman and F.J. Yndurain, Radiative corrections to W W scattering, Nucl. Phys. B 325 (1989) 1 [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Binoth and J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].
  32. [32]
    R. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
  33. [33]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  34. [34]
    G. Bhattacharyya, G.C. Branco and S. Nandi, Universal Doublet-Singlet Higgs Couplings and phenomenology at the CERN Large Hadron Collider, Phys. Rev. D 77 (2008) 117701 [arXiv:0712.2693] [INSPIRE].ADSGoogle Scholar
  35. [35]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  36. [36]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Dawson and W. Yan, Hiding the Higgs Boson with Multiple Scalars, Phys. Rev. D 79 (2009) 095002 [arXiv:0904.2005] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Bock, R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, Measuring Hidden Higgs and Strongly-Interacting Higgs Scenarios, Phys. Lett. B 694 (2010) 44 [arXiv:1007.2645] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P.J. Fox, D. Tucker-Smith and N. Weiner, Higgs friends and counterfeits at hadron colliders, JHEP 06 (2011) 127 [arXiv:1104.5450] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs Maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].ADSGoogle Scholar
  43. [43]
    B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: Standard Higgs and Hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R.S. Gupta and J.D. Wells, Higgs boson search significance deformations due to mixed-in scalars, Phys. Lett. B 710 (2012) 154 [arXiv:1110.0824] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Bertolini and M. McCullough, The Social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. Batell, D. McKeen and M. Pospelov, Singlet Neighbors of the Higgs Boson, JHEP 10 (2012) 104 [arXiv:1207.6252] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D.Yu. Bardin, M.S. Bilenky, G. Mitselmakher, T. Riemann and M. Sachwitz, A Realistic Approach to the Standard Z Peak, Z. Phys. C 44 (1989) 493 [INSPIRE].Google Scholar
  49. [49]
    D.Yu. Bardin et al., Analytic approach to the complete set of QED corrections to fermion pair production in e + e annihilation, Nucl. Phys. B 351 (1991) 1 [hep-ph/9801208] [INSPIRE].
  50. [50]
    D.Yu. Bardin et al., QED corrections with partial angular integration to fermion pair production in e + e annihilation, Phys. Lett. B 255 (1991) 290 [hep-ph/9801209] [INSPIRE].
  51. [51]
    D.Yu. Bardin et al., ZFITTER: An analytical program for fermion pair production in e + e annihilation, hep-ph/9412201 [INSPIRE].
  52. [52]
    D.Yu. Bardin et al., ZFITTER v.6.21: A semianalytical program for fermion pair production in e + e annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].
  53. [53]
    A.B. Arbuzov, Light pair corrections to electron positron annihilation at LEP/SLC, hep-ph/9907500 [INSPIRE].
  54. [54]
    A.B. Arbuzov et al., ZFITTER: A semi-analytical program for fermion pair production in e+eannihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [INSPIRE].
  55. [55]
    ZFITTER support group, ZFITTER 6.43, June, 2008,
  56. [56]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  57. [57]
    ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, collaborations, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  58. [58]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  59. [59]
    D. López-Val and T. Robens, Δr and the W-boson mass in the singlet extension of the standard model, Phys. Rev. D 90 (2014) 114018 [arXiv:1406.1043] [INSPIRE].ADSGoogle Scholar
  60. [60]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  61. [61]
    B. Cooper, N. Konstantinidis, L. Lambourne and D. Wardrope, Boosted \( hh\to b\overline{b}b\overline{b} \) : A new topology in searches for TeV-scale resonances at the LHC, Phys. Rev. D 88 (2013) 114005 [arXiv:1307.0407] [INSPIRE].ADSGoogle Scholar
  62. [62]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the (\( b\overline{b} \))(\( b\overline{b} \)) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    ATLAS collaboration, A search for resonant Higgs-pair production in the \( b\overline{b}b\overline{b} \) final state in pp collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2014-005 (2014).
  64. [64]
    CMS collaboration, Search for di-Higgs resonances decaying to 4 bottom quarks, CMS-PAS-HIG-14-013.
  65. [65]
    ATLAS collaboration, Search For Higgs Boson Pair Production in the \( \gamma \gamma b\overline{b} \) Final State using pp Collision Data at \( \sqrt{s} \) = 8 TeV from the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].
  66. [66]
    CMS collaboration, Search for the resonant production of two Higgs bosons in the final state with two photons and two bottom quarks, CMS-PAS-HIG-13-032.
  67. [67]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
  68. [68]
    N. Chen, C. Du, Y. Fang and L.-C. Lü, LHC Searches for The Heavy Higgs Boson via Two B Jets plus Diphoton, Phys. Rev. D 89 (2014) 115006 [arXiv:1312.7212] [INSPIRE].ADSGoogle Scholar
  69. [69]
    V. Barger, L.L. Everett, C.B. Jackson, A.D. Peterson and G. Shaughnessy, New physics in resonant production of Higgs boson pairs, Phys. Rev. Lett. 114 (2015) 011801 [arXiv:1408.0003] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    V. Barger, L.L. Everett, C.B. Jackson, A.D. Peterson and G. Shaughnessy, Measuring the two-Higgs doublet model scalar potential at LHC14, Phys. Rev. D 90 (2014) 095006 [arXiv:1408.2525] [INSPIRE].ADSGoogle Scholar
  71. [71]
    LHC Higgs Cross section Working Group, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  72. [72]
    M. El-Kacimi and R. Lafaye, Simulation of neutral Higgs pairs production processes in PYTHIA using HPAIR matrix elements, ATL-PHYS-2002-015 (2002).
  73. [73]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  74. [74]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  75. [75]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  77. [77]
    A. Barr, C. Lester and P. Stephens, m T 2 : The truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].
  78. [78]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring the top quark mass with m T 2 at the LHC, Phys. Rev. D 78 (2008) 034019 [arXiv:0804.2185] [INSPIRE].ADSGoogle Scholar
  79. [79]
    CDF collaboration, T. Aaltonen et al., Measurement of the Top Quark Mass in the Dilepton Channel Using mT2 at CDF, Phys. Rev. D 81 (2010) 031102 [arXiv:0911.2956] [INSPIRE].
  80. [80]
    ATLAS collaboration, Top quark mass measurement in the eμ channel using the m T 2 variable at ATLAS, ATLAS-CONF-2012-082 (2012).
  81. [81]
    CMS collaboration, Measurement of masses in the \( t\overline{t} \) system by kinematic endpoints in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 73 (2013) 2494 [arXiv:1304.5783] [INSPIRE].
  82. [82]
    K. Choi, S. Choi, J.S. Lee and C.B. Park, Reconstructing the Higgs boson in dileptonic W decays at hadron collider, Phys. Rev. D 80 (2009) 073010 [arXiv:0908.0079] [INSPIRE].ADSGoogle Scholar
  83. [83]
    K. Choi, J.S. Lee and C.B. Park, Measuring the Higgs boson mass with transverse mass variables, Phys. Rev. D 82 (2010) 113017 [arXiv:1008.2690] [INSPIRE].ADSGoogle Scholar
  84. [84]
    H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and m T 2, JHEP 12 (2008) 063 [arXiv:0810.5178] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, M T 2 -assisted on-shell reconstruction of missing momenta and its application to spin measurement at the LHC, Phys. Rev. D 79 (2009) 031701 [arXiv:0810.4853] [INSPIRE].ADSGoogle Scholar
  86. [86]
    C.B. Park, Reconstructing the heavy resonance at hadron colliders, Phys. Rev. D 84 (2011) 096001 [arXiv:1106.6087] [INSPIRE].ADSGoogle Scholar
  87. [87]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  89. [89]
    C.G. Lester, The stransverse mass, M T 2 , in special cases, JHEP 05 (2011) 076 [arXiv:1103.5682] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    A.J. Barr, B. Gripaios and C.G. Lester, Measuring the Higgs boson mass in dileptonic W-boson decays at hadron colliders, JHEP 07 (2009) 072 [arXiv:0902.4864] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    CMS collaboration, CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].
  92. [92]
    ATLAS collaboration, Beyond Standard Model Higgs boson physics with the ATLAS experiment at the LHC, ATL-PHYS-PROC-2014-097 [arXiv:1408.3521].
  93. [93]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  94. [94]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].
  95. [95]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  96. [96]
    T. Li and Y.-F. Zhou, Strongly first order phase transition in the singlet fermionic dark matter model after LUX, JHEP 07 (2014) 006 [arXiv:1402.3087] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    D.G. Cerdeno and A.M. Green, Direct detection of WIMPs, arXiv:1002.1912 [INSPIRE].
  98. [98]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  99. [99]
    XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].
  100. [100]
    S. Dawson et al., Higgs Working Group Report of the Snowmass 2013 Community Planning Study, arXiv:1310.8361.
  101. [101]
    M.E. Peskin, Estimation of LHC and ILC Capabilities for Precision Higgs Boson Coupling Measurements, arXiv:1312.4974.
  102. [102]
    T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  104. [104]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  105. [105]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  106. [106]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  108. [108]
    ATLAS collaboration, Measurement of the Mistag Rate with 5 fb −1 of Data Collected by the ATLAS Detector, ATLAS-CONF-2012-040 (2012).
  109. [109]
    C. Lester and A. Barr, MTGEN: Mass scale measurements in pair-production at colliders, JHEP 12 (2007) 102 [arXiv:0708.1028] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino Stransverse Mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring superparticle masses at hadron collider using the transverse mass kink, JHEP 02 (2008) 035 [arXiv:0711.4526] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Víctor Martín Lozano
    • 1
    • 2
  • Jesús M. Moreno
    • 1
  • Chan Beom Park
    • 3
    • 4
  1. 1.Instituto de Física TeóricaIFT-UAM/CSIC, UAM CantoblancoMadridSpain
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridCantoblancoSpain
  3. 3.School of PhysicsKorea Institute for Advanced StudySeoulSouth Korea
  4. 4.TH Division, Physics DepartmentCERNGeneve 23Switzerland

Personalised recommendations