Extended generalized geometry and a DBI-type effective action for branes ending on branes

Open Access
Article

Abstract

Starting from the Nambu-Goto bosonic membrane action, we develop a geometric description suitable for p-brane backgrounds. With tools of generalized geometry we derive the pertinent generalization of the string open-closed relations to the p-brane case. Nambu-Poisson structures are used in this context to generalize the concept of semi-classical noncommutativity of D-branes governed by a Poisson tensor. We find a natural description of the correspondence of recently proposed commutative and noncommutative versions of an effective action for p-branes ending on a p-brane. We calculate the power series expansion of the action in background independent gauge. Leading terms in the double scaling limit are given by a generalization of a (semi-classical) matrix model.

Keywords

p-branes Differential and Algebraic Geometry M-Theory 

References

  1. [1]
    B. Jurčo and P. Schupp, Nambu-σ-model and effective membrane actions, Phys. Lett. B 713 (2012) 313 [arXiv:1203.2910] [INSPIRE].ADSGoogle Scholar
  2. [2]
    E.S. Fradkin and A.A. Tseytlin, Quantum string theory effective action, Nucl. Phys. B 261 (1985) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    R.G. Leigh, Dirac-Born-Infeld action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [INSPIRE].
  5. [5]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. Cornalba, On the general structure of the non-Abelian Born-Infeld action, Adv. Theor. Math. Phys. 4 (2002) 1259 [hep-th/0006018] [INSPIRE].MathSciNetGoogle Scholar
  7. [7]
    B. Jurčo, P. Schupp and J. Wess, Non-Abelian noncommutative gauge theory via noncommutative extra dimensions, Nucl. Phys. B 604 (2001) 148 [hep-th/0102129] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Terashima, The non-Abelian Born-Infeld action and noncommutative gauge theory, JHEP 07 (2000) 033 [hep-th/0006058] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    C.-H. Chen, K. Furuuchi, P.-M. Ho and T. Takimi, More on the Nambu-Poisson M 5-brane theory: scaling limit, background independence and an all order solution to the Seiberg-Witten map, JHEP 10 (2010) 100 [arXiv:1006.5291] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    P.-M. Ho, Gauge symmetries from Nambu-Poisson brackets, Universe 1 (2013) 46 [INSPIRE].Google Scholar
  11. [11]
    B. Jurčo, P. Schupp and J. Vysoký, Nambu-Poisson gauge theory, Phys. Lett. B 733 (2014) 221 [arXiv:1403.6121] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P.-M. Ho and C.-T. Ma, S-duality for D3-brane in NS-NS and RR backgrounds, arXiv:1311.3393 [INSPIRE].
  13. [13]
    P.-M. Ho and C.-T. Ma, Effective action for Dp-brane in large RR (p − 1)-form background, JHEP 05 (2013) 056 [arXiv:1302.6919] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P.-M. Ho and Y. Matsuo, A toy model of open membrane field theory in constant 3-form flux, Gen. Rel. Grav. 39 (2007) 913 [hep-th/0701130] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    P.-M. Ho and Y. Matsuo, M 5 from M 2, JHEP 06 (2008) 105 [arXiv:0804.3629] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    P.-M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M 5-brane in three-form flux and multiple M 2-branes, JHEP 08 (2008) 014 [arXiv:0805.2898] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    P.-M. Ho, A concise review on M 5-brane in large C-field background, Chin. J. Phys. 48 (2010) 1 [arXiv:0912.0445] [INSPIRE].ADSGoogle Scholar
  18. [18]
    K. Furuuchi and T. Takimi, String solitons in the M 5-brane worldvolume action with Nambu-Poisson structure and Seiberg-Witten map, JHEP 08 (2009) 050 [arXiv:0906.3172] [INSPIRE].MathSciNetGoogle Scholar
  19. [19]
    K. Furuuchi, Non-linearly extended self-dual relations from the Nambu-Bracket description of M 5-brane in a constant C-field background, JHEP 03 (2010) 127 [arXiv:1001.2300] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405 [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    L. Takhtajan, On foundation of the generalized Nambu mechanics (second version), Commun. Math. Phys. 160 (1994) 295 [hep-th/9301111] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    D. Alekseevsky and P. Guha, On decomposability of Nambu-Poisson tensor, Acta Math. Univ. Comenianae LXV (1996) 1.MathSciNetGoogle Scholar
  23. [23]
    P. Guatheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996) 103.ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    Y. Hagiwara, Nambu-Dirac manifolds, J. Phys. A 35 (2002) 1263.ADSMathSciNetGoogle Scholar
  25. [25]
    Y. Bi and Y. Sheng, On higher analogues of Courant algebroids, Sci. China A 54 (2011) 437 [arXiv:1003.1350] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  26. [26]
    M. Zambon, L algebras and higher analogues of Dirac structures and Courant algebroids, J. Symplectic Geom. 10N4 (2012) 1 [arXiv:1003.1004] [INSPIRE].MathSciNetGoogle Scholar
  27. [27]
    J.-H. Park and C. Sochichiu, Taking off the square root of Nambu-Goto action and obtaining Filippov-Lie algebra gauge theory action, Eur. Phys. J. C 64 (2009) 161 [arXiv:0806.0335] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    M. Sato, Model of M-theory with eleven matrices, JHEP 07 (2010) 026 [arXiv:1003.4694] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. DeBellis, C. Sämann and R.J. Szabo, Quantized Nambu-Poisson manifolds in a 3-Lie algebra reduced model, JHEP 04 (2011) 075 [arXiv:1012.2236] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C.-S. Chu and G.S. Sehmbi, D1-strings in large RR 3-form flux, quantum Nambu geometry and M 5-branes in C-field, J. Phys. A 45 (2012) 055401 [arXiv:1110.2687] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    A. Basu and J.A. Harvey, The M 2-M 5 brane system and a generalized Nahms equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    M.M. Sheikh-Jabbari and M. Torabian, Classification of all 1/2 BPS solutions of the tiny graviton matrix theory, JHEP 04 (2005) 001 [hep-th/0501001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    A. Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    J.M. Maldacena, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Transverse five-branes in matrix theory, JHEP 01 (2003) 038 [hep-th/0211139] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.M. Sheikh-Jabbari, Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture, JHEP 09 (2004) 017 [hep-th/0406214] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    M. Cederwall, B.E.W. Nilsson and P. Sundell, An action for the superfive-brane in D = 11 supergravity, JHEP 04 (1998) 007 [hep-th/9712059] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    L. Bao, M. Cederwall and B.E.W. Nilsson, A note on topological M 5-branes and string-fivebrane duality, JHEP 06 (2008) 100 [hep-th/0603120] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  42. [42]
    P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    D.P. Sorokin, Superbranes and superembeddings, Phys. Rept. 329 (2000) 1 [hep-th/9906142] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    J. Simon, Brane effective actions, κ-symmetry and applications, Living Rev. Rel. 15 (2012) 3 [arXiv:1110.2422] [INSPIRE].Google Scholar
  45. [45]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  46. [46]
    N. Hitchin, Brackets, forms and invariant functionals, math.DG/0508618 [INSPIRE].
  47. [47]
    N. Hitchin, Instantons, Poisson structures and generalized Kähler geometry, Commun. Math. Phys. 265 (2006) 131 [math.DG/0503432] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  48. [48]
    M. Gualtieri, Generalized complex geometry, math.DG/0401221 [INSPIRE].
  49. [49]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: E d(d) × \( \mathbb{R} \) + and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Kotov, P. Schaller and T. Strobl, Dirac σ-models, Commun. Math. Phys. 260 (2005) 455 [hep-th/0411112] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  53. [53]
    M. Bojowald, A. Kotov and T. Strobl, Lie algebroid morphisms, Poisson σ-models and off-shell closed gauge symmetries, J. Geom. Phys. 54 (2005) 400 [math.DG/0406445] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  54. [54]
    A. Kotov and T. Strobl, Generalizing geometryalgebroids and σ-models, arXiv:1004.0632 [INSPIRE].
  55. [55]
    R. Zucchini, Generalized complex geometry, generalized branes and the Hitchin σ-model, JHEP 03 (2005) 022 [hep-th/0501062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP 03 (2005) 035 [hep-th/0410183] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    G. Bonelli and M. Zabzine, From current algebras for p-branes to topological M-theory, JHEP 09 (2005) 015 [hep-th/0507051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    J. Ekstrand and M. Zabzine, Courant-like brackets and loop spaces, JHEP 03 (2011) 074 [arXiv:0903.3215] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].
  60. [60]
    N. Halmagyi, Non-geometric string backgrounds and worldsheet algebras, JHEP 07 (2008) 137 [arXiv:0805.4571] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    G.R. Cavalcanti and M. Gualtieri, Generalized complex geometry and T-duality, arXiv:1106.1747 [INSPIRE].
  62. [62]
    P. Bouwknegt, Lectures on cohomology, T-duality, and generalized geometry, Lect. Notes Phys. 807 (2010) 261 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Asakawa, S. Sasa and S. Watamura, D-branes in generalized geometry and Dirac-Born-Infeld action, JHEP 10 (2012) 064 [arXiv:1206.6964] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    T. Asakawa, H. Muraki and S. Watamura, D-brane on Poisson manifold and generalized geometry, Int. J. Mod. Phys. A 29 (2014) 1450089 [arXiv:1402.0942] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    B. Jurčo, P. Schupp and J. Vysoký, On the generalized geometry origin of noncommutative gauge theory, JHEP 07 (2013) 126 [arXiv:1303.6096] [INSPIRE].ADSGoogle Scholar
  67. [67]
    I. Bars, Membrane symmetries and anomalies, Nucl. Phys. B 343 (1990) 398 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    B. Jurčo, P. Schupp and J. Vysoký, p-brane actions and higher Roytenberg brackets, JHEP 02 (2013) 042 [arXiv:1211.0814] [INSPIRE].ADSGoogle Scholar
  72. [72]
    E. Bergshoeff, M. de Roo and T. Ortín, The eleven-dimensional five-brane, Phys. Lett. B 386 (1996) 85 [hep-th/9606118] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    D.S. Berman et al., Deformation independent open brane metrics and generalized theta parameters, JHEP 02 (2002) 012 [hep-th/0109107] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    D.S. Berman and B. Pioline, Open membranes, ribbons and deformed Schild strings, Phys. Rev. D 70 (2004) 045007 [hep-th/0404049] [INSPIRE].ADSMathSciNetGoogle Scholar
  75. [75]
    E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, Critical fields on the M 5-brane and noncommutative open strings, Phys. Lett. B 492 (2000) 193 [hep-th/0006112] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, A noncommutative M-theory five-brane, Nucl. Phys. B 590 (2000) 173 [hep-th/0005026] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    J. Dufour and N. Zung, Poisson structures and their normal forms, Progress in Mathematics. Birkhäuser, Basel Switzerland (2005).Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Charles University in Prague, Faculty of Mathematics and PhysicsMathematical InstitutePragueCzech Republic
  2. 2.Jacobs University BremenBremenGermany
  3. 3.Department of PhysicsCzech Technical University in Prague, Faculty of Nuclear Sciences and Physical EngineeringPragueCzech Republic

Personalised recommendations