Naturalness and chaotic inflation in supergravity from massive vector multiplets

Open Access
Article

Abstract

We study the embedding of the quadratic model of chaotic inflation into the 4D, N=1 minimal theories of supergravity by the use of massive vector multiplets and investigate its robustness against higher order corrections. In particular, we investigate the criterion of technical naturalness for the inflaton potential. In the framework of the new-minimal formulation the massive vector multiplet is built in terms of a real linear multiplet coupled to a vector multiplet via the 4D analog of the Green-Schwarz term. This theory gives rise to a single-field quadratic model of chaotic inflation, which is protected by an shift symmetry which naturally suppresses the higher order corrections. The embedding in the old-minimal formulation is again achieved in terms of a massive vector multiplet and also gives rise to single-field inflation. Nevertheless in this case there is no obvious symmetry to protect the model from higher order corrections.

Keywords

Cosmology of Theories beyond the SM Supergravity Models 

References

  1. [1]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Kehagias and A. Riotto, Remarks about the tensor mode detection by the BICEP2 collaboration and the super-Planckian excursions of the inflaton field, Phys. Rev. D 89 (2014) 101301 [arXiv:1403.4811] [INSPIRE].ADSGoogle Scholar
  3. [3]
    L.E. Ibáñez and I. Valenzuela, BICEP2, the Higgs mass and the SUSY-breaking scale, arXiv:1403.6081 [INSPIRE].
  4. [4]
    G. Dvali and C. Gomez, BICEP2 in corpuscular description of inflation, arXiv:1403.6850 [INSPIRE].
  5. [5]
    D.H. Lyth, BICEP2, the curvature perturbation and supersymmetry, arXiv:1403.7323 [INSPIRE].
  6. [6]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Kaloper and A. Lawrence, Natural chaotic inflation and UV sensitivity, Phys. Rev. D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
  9. [9]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    A.D. Linde, Inflationary cosmology, Lect. Notes Phys. 738 (2008) 1 [arXiv:0705.0164] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Demozzi, A. Linde and V. Mukhanov, Supercurvaton, JCAP 04 (2011) 013 [arXiv:1012.0549] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Ferrara, A. Kehagias and A. Riotto, The imaginary Starobinsky model, Fortsch. Phys. 62 (2014) 573 [arXiv:1403.5531] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Kallosh, A. Linde, B. Vercnocke and W. Chemissany, Is imaginary Starobinsky model real?, JCAP 07 (2014) 053 [arXiv:1403.7189] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Ellis, M.A.G. García, D.V. Nanopoulos and K.A. Olive, Resurrecting quadratic inflation in no-scale supergravity in light of BICEP2, JCAP 05 (2014) 037 [arXiv:1403.7518] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Hamaguchi, T. Moroi and T. Terada, Complexified Starobinsky inflation in supergravity in the light of recent BICEP2 result, Phys. Lett. B 733 (2014) 305 [arXiv:1403.7521] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Mukhi, Massive vector multiplet coupled to supergravity, Phys. Rev. D 20 (1979) 1839 [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Van Proeyen, Massive vector multiplets in supergravity, Nucl. Phys. B 162 (1980) 376 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, New minimal higher derivative supergravity coupled to matter, Nucl. Phys. B 306 (1988) 160 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    F. Farakos, A. Kehagias and A. Riotto, On the Starobinsky model of inflation from supergravity, Nucl. Phys. B 876 (2013) 187 [arXiv:1307.1137] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Higher order corrections in minimal supergravity models of inflation, JCAP 11 (2013) 046 [arXiv:1309.1085] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    S. Ferrara, P. Fré and A.S. Sorin, On the topology of the inflaton field in minimal supergravity models, JHEP 04 (2014) 095 [arXiv:1311.5059] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Ferrara, P. Fré and A.S. Sorin, On the gauged Kähler isometry in minimal supergravity models of inflation, Fortsch. Phys. 62 (2014) 277 [arXiv:1401.1201] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Kadota and M. Yamaguchi, D-term chaotic inflation in supergravity, Phys. Rev. D 76 (2007) 103522 [arXiv:0706.2676] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    K. Kadota, T. Kawano and M. Yamaguchi, New D-term chaotic inflation in supergravity and leptogenesis, Phys. Rev. D 77 (2008) 123516 [arXiv:0802.0525] [INSPIRE].ADSGoogle Scholar
  30. [30]
    I. Dalianis and F. Farakos, Higher derivative D-term inflation in new-minimal supergravity, arXiv:1403.3053 [INSPIRE].
  31. [31]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 135 [INSPIRE].Google Scholar
  32. [32]
    M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N = 1 supergravity, Phys. Lett. B 105 (1981) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Sohnius and P.C. West, The tensor calculus and matter coupling of the alternative minimal auxiliary field formulation of N = 1 supergravity, Nucl. Phys. B 198 (1982) 493 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    S. Ferrara and S. Sabharwal, Structure of new minimal supergravity, Annals Phys. 189 (1989) 318 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    B.A. Ovrut and C. Schwiebert, Linear multiplets coupled to new minimal supergravity, Nucl. Phys. B 321 (1989) 163 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Cecotti, S. Ferrara and L. Girardello, Massive vector multiplets from superstrings, Nucl. Phys. B 294 (1987) 537 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Lopes Cardoso and B.A. Ovrut, A Green-Schwarz mechanism for D = 4, N = 1 supergravity anomalies, Nucl. Phys. B 369 (1992) 351 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett. B 85 (1979) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Kugo and S. Uehara, Conformal and Poincaré tensor calculi in N = 1 supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Relation between different auxiliary field formulations of N = 1 supergravity coupled to matter, Nucl. Phys. B 223 (1983) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, hep-th/0108200 [INSPIRE].
  42. [42]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: a walk through superspace, IOP, Bristol U.K. (1995).CrossRefMATHGoogle Scholar
  43. [43]
    D. Butter, N = 1 conformal superspace in four dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  44. [44]
    S. Ferrara, S. Sabharwal and M. Villasante, Curvatures and Gauss-Bonnet theorem in new minimal supergravity, Phys. Lett. B 205 (1988) 302 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    S. Cecotti, S. Ferrara, L. Girardello, A. Pasquinucci and M. Porrati, Matter coupled supergravity with Gauss-Bonnet invariants: component Lagrangian and supersymmetry breaking, Int. J. Mod. Phys. A 3 (1988) 1675 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    B.A. Ovrut and S. Kalyana Rama, New minimal supergravity, Chern-Simons terms and induced massive gauge fields, Nucl. Phys. B 333 (1990) 380 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B.A. Ovrut and S. Kalyana Rama, Lorentz and U(1) Chern-Simons terms in new minimal supergravity, Phys. Lett. B 254 (1991) 132 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A. (1992).Google Scholar
  49. [49]
    S. Ferrara and M. Villasante, Curvatures, Gauss-Bonnet and Chern-Simons multiplets in old minimal N = 1 supergravity, J. Math. Phys. 30 (1989) 104 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  50. [50]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: a geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations