SOX: Short distance neutrino Oscillations with BoreXino

  • G. Bellini
  • D. Bick
  • G. Bonfini
  • D. Bravo
  • B. Caccianiga
  • F. Calaprice
  • A. Caminata
  • P. Cavalcante
  • A. Chavarria
  • A. Chepurnov
  • D. D’Angelo
  • S. Davini
  • A. Derbin
  • A. Etenko
  • G. Fernandes
  • K. Fomenko
  • D. Franco
  • C. Galbiati
  • C. Ghiano
  • M. Göger-Neff
  • A. Goretti
  • C. Hagner
  • E. Hungerford
  • Aldo Ianni
  • Andrea Ianni
  • V. Kobychev
  • D. Korablev
  • G. Korga
  • D. Krasnicky
  • D. Kryn
  • M. Laubenstein
  • J. M. Link
  • E. Litvinovich
  • F. Lombardi
  • P. Lombardi
  • L. Ludhova
  • G. Lukyanchenko
  • I. Machulin
  • S. Manecki
  • W. Maneschg
  • E. Meroni
  • M. Meyer
  • L. Miramonti
  • M. Misiaszek
  • P. Mosteiro
  • V. Muratova
  • L. Oberauer
  • M. Obolensky
  • F. Ortica
  • K. Otis
  • M. Pallavicini
  • E. Pantic
  • L. Papp
  • S. Perasso
  • A. Pocar
  • G. Ranucci
  • A. Razeto
  • A. Re
  • A. Romani
  • N. Rossi
  • R. Saldanha
  • C. Salvo
  • S. Schönert
  • D. Semenov
  • H. Simgen
  • M. Skorokhvatov
  • O. Smirnov
  • A. Sotnikov
  • S. Sukhotin
  • Y. Suvorov
  • R. Tartaglia
  • G. Testera
  • E. Unzhakov
  • R. B. Vogelaar
  • H. Wang
  • M. Wojcik
  • M. Wurm
  • O. Zaimidoroga
  • S. Zavatarelli
  • G. Zuzel
Open Access
Article

Abstract

The very low radioactive background of the Borexino detector, its large size, and the well proved capability to detect both low energy electron neutrinos and antineutrinos make an ideal case for the study of short distance neutrino oscillations with artificial sources at Gran Sasso.

This paper describes the possible layouts of 51Cr (νe) and 144Ce-144Pr \( \left( {{{\overline{\nu}}_e}} \right) \) source experiments in Borexino and shows the expected sensitivity to eV mass sterile neutrinos for three possible different phases of the experiment. Expected results on neutrino magnetic moment, electroweak mixing angle, and couplings to axial and vector currents are shown too.

Keywords

Oscillation Exotics Neutrino Detectors and Telescopes 

References

  1. [1]
    GALLEX collaboration, P. Anselmann et al., Solar neutrinos observed by GALLEX at Gran Sasso., Phys. Lett. B 285 (1992) 376 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    SNO collaboration, Q. Ahmad et al., Measurement of the rate of νe + dp + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Borexino collaboration, C. Arpesella et al., First real time detection of 7 Be solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101 [arXiv:0708.2251] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    MINOS collaboration, D. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSGoogle Scholar
  12. [12]
    MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event excess in the MiniBooNE search for \( {{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e} \) oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv:1212.5226 [INSPIRE].
  14. [14]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  15. [15]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Zhang, X. Qian and P. Vogel, Reactor antineutrino anomaly with known θ13, Phys. Rev. D87 (2013) 073018 [arXiv:1303.0900] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Giunti, M. Laveder, Y. Li, Q. Liu and H. Long, Update of short-baseline electron neutrino and antineutrino disappearance, Phys. Rev. D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C. Grieb, J. Link and R. Raghavan, Probing active to sterile neutrino oscillations in the LENS detector, Phys. Rev. D 75 (2007) 093006 [hep-ph/0611178] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Giunti and M. Laveder, Statistical significance of the gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Borexino collaboration, G. Bellini et al., Observation of geo-neutrinos, Phys. Lett. B 687 (2010) 299 [arXiv:1003.0284] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Cribier et al., A proposed search for a fourth neutrino with a PBq antineutrino source, Phys. Rev. Lett. 107 (2011) 201801 [arXiv:1107.2335] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Borexino collaboration, G. Bellini et al., Absence of day-night asymmetry of 862 keV 7 Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B 707 (2012) 22 [arXiv:1104.2150] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Borexino collaboration, G. Bellini et al., First evidence of pep solar neutrinos by direct detection in Borexino, Phys. Rev. Lett. 108 (2012) 051302 [arXiv:1110.3230] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    GALLEX collaboration, W. Hampel et al., Final results of the 51 Cr neutrino source experiments in GALLEX, Phys. Lett. B 420 (1998) 114 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    SAGE collaboration, J. Abdurashitov et al., Measurement of the response of the Russian-American gallium experiment to neutrinos from a 51 Cr source, Phys. Rev. C 59 (1999) 2246 [hep-ph/9803418] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Z. Berezhiani, R. Raghavan and A. Rossi, Probing nonstandard couplings of neutrinos at the Borexino detector, Nucl. Phys. B 638 (2002) 62 [hep-ph/0111138] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Ianni, D. Montanino and G. Scioscia, Test of nonstandard neutrino properties with the BOREXINO source experiments, Eur. Phys. J. C 8 (1999) 609 [hep-ex/9901012] [INSPIRE].ADSGoogle Scholar
  33. [33]
    N. Ferrari, G. Fiorentini and B. Ricci, The 51 Cr neutrino source and borexino: a desirable marriage, Phys. Lett. B 387 (1996) 427 [hep-ph/9607248] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.G. Beda et al., Gemma experiment: the results of neutrino magnetic moment search, Phys. Part. Nucl. Lett. 10 (2013) 139 [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    Borexino collaboration, G. Alimonti et al., The liquid handling systems for the Borexino solar neutrino detector, Nucl. Instrum. Meth. A 609 (2009) 58 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Borexino collaboration, H. Back et al., Pulse-shape discrimination with the counting test facility, Nucl. Instrum. Meth. A 584 (2008) 98 [arXiv:0705.0239] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Borexino collaboration, G. Alimonti et al., The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600 (2009) 568 [arXiv:0806.2400] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Borexino collaboration, G. Bellini et al., Muon and cosmogenic neutron detection in Borexino, 2011 JINST 6 P05005 [arXiv:1101.3101] [INSPIRE].
  39. [39]
    CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Palazzo, Phenomenology of light sterile neutrinos: a brief review, Mod. Phys. Lett. A 28 (2013) 1330004 [arXiv:1302.1102] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • G. Bellini
    • 8
  • D. Bick
  • G. Bonfini
    • 5
  • D. Bravo
    • 15
  • B. Caccianiga
    • 8
  • F. Calaprice
    • 11
  • A. Caminata
    • 3
  • P. Cavalcante
    • 5
  • A. Chavarria
    • 11
  • A. Chepurnov
    • 16
  • D. D’Angelo
    • 8
  • S. Davini
  • A. Derbin
    • 12
  • A. Etenko
    • 7
  • G. Fernandes
    • 3
  • K. Fomenko
    • 2
    • 5
  • D. Franco
    • 1
  • C. Galbiati
    • 11
  • C. Ghiano
    • 1
  • M. Göger-Neff
    • 13
  • A. Goretti
    • 11
  • C. Hagner
  • E. Hungerford
  • Aldo Ianni
    • 5
  • Andrea Ianni
    • 11
  • V. Kobychev
    • 6
  • D. Korablev
    • 2
  • G. Korga
  • D. Krasnicky
    • 3
  • D. Kryn
    • 1
  • M. Laubenstein
    • 5
  • J. M. Link
    • 15
  • E. Litvinovich
    • 7
  • F. Lombardi
    • 5
  • P. Lombardi
    • 8
  • L. Ludhova
    • 8
  • G. Lukyanchenko
    • 7
  • I. Machulin
    • 7
  • S. Manecki
    • 15
  • W. Maneschg
    • 9
  • E. Meroni
    • 8
  • M. Meyer
  • L. Miramonti
    • 8
  • M. Misiaszek
    • 4
  • P. Mosteiro
    • 11
  • V. Muratova
    • 12
  • L. Oberauer
    • 13
  • M. Obolensky
    • 1
  • F. Ortica
    • 10
  • K. Otis
    • 14
  • M. Pallavicini
    • 3
  • E. Pantic
  • L. Papp
    • 15
  • S. Perasso
    • 3
  • A. Pocar
    • 14
  • G. Ranucci
    • 8
  • A. Razeto
    • 5
  • A. Re
    • 8
  • A. Romani
    • 10
  • N. Rossi
    • 5
  • R. Saldanha
    • 11
  • C. Salvo
    • 3
  • S. Schönert
    • 13
  • D. Semenov
    • 12
  • H. Simgen
    • 9
  • M. Skorokhvatov
    • 7
  • O. Smirnov
    • 2
  • A. Sotnikov
    • 2
  • S. Sukhotin
    • 7
  • Y. Suvorov
    • 7
  • R. Tartaglia
    • 5
  • G. Testera
    • 3
  • E. Unzhakov
    • 12
  • R. B. Vogelaar
    • 15
  • H. Wang
  • M. Wojcik
    • 4
  • M. Wurm
  • O. Zaimidoroga
    • 2
  • S. Zavatarelli
    • 3
  • G. Zuzel
    • 4
  1. 1.APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris CitéParisFrance
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Dipartimento di FisicaUniversità e INFNGenovaItaly
  4. 4.M. Smoluchowski Institute of PhysicsJagellonian UniversityKrakowPoland
  5. 5.INFN Laboratori Nazionali del Gran SassoAssergiItaly
  6. 6.Kiev Institute for Nuclear ResearchKievUkraine
  7. 7.NRC Kurchatov InstituteMoscowRussia
  8. 8.Dipartimento di FisicaUniversità degli Studi e INFNMilanoItaly
  9. 9.Max-Plank-Institut für KernphysikHeidelbergGermany
  10. 10.Dipartimento di ChimicaUniversità e INFNPerugiaItaly
  11. 11.Physics DepartmentPrinceton UniversityPrincetonU.S.A
  12. 12.St. Petersburg Nuclear Physics InstituteGatchinaRussia
  13. 13.Physik DepartmentTechnische Universität MünchenGarchingGermany
  14. 14.Physics DepartmentUniversity of MassachusettsAmherstU.S.A
  15. 15.Physics DepartmentVirginia Polytechnic Institute and State UniversityBlacksburgU.S.A
  16. 16.Lomonosov Moscow State University Skobeltsyn Institute of Nuclear PhysicsMoscowRussia

Personalised recommendations