Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Vortex precession and exchange in a Bose-Einstein condensate

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 July 2021
  • volume 2021, Article number: 157 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Vortex precession and exchange in a Bose-Einstein condensate
Download PDF
  • Julien Garaud1,
  • Jin Dai2 &
  • Antti J. Niemi2,3,4 
  • 261 Accesses

  • 3 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

Vortices in a Bose-Einstein condensate are modelled as spontaneously symmetry breaking minimum energy solutions of the time dependent Gross-Pitaevskii equation, using the method of constrained optimization. In a non-rotating axially symmetric trap, the core of a single vortex precesses around the trap center and, at the same time, the phase of its wave function shifts at a constant rate. The precession velocity, the speed of phase shift, and the distance between the vortex core and the trap center, depend continuously on the value of the conserved angular momentum that is carried by the entire condensate. In the case of a symmetric pair of identical vortices, the precession engages an emergent gauge field in their relative coordinate, with a flux that is equal to the ratio between the precession and shift velocities.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269 (1995) 198 [INSPIRE].

    Article  ADS  Google Scholar 

  2. K. B. Davis et al., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75 (1995) 3969 [INSPIRE].

    Article  ADS  Google Scholar 

  3. C. C. Bradley, C. A. Sackett and R. G. Hulet, Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Phys. Rev. Lett. 78 (1997) 985 [INSPIRE].

    Article  ADS  Google Scholar 

  4. D. C. Aveline et al., Observation of Bose-Einstein condensates in an Earth-orbiting research lab, Nature 582 (2020) 193 [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. R. Elliott, M. C. Krutzik, J. R. Williams, R. J. Thompson and D. C. Aveline, NASA’s Cold Atom Lab (CAL): system development and ground test status, npj Microgravity 4 (2018) 16.

  6. I. Bloch, J. Dalibard and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nature Phys. 8 (2012) 267.

    Article  ADS  Google Scholar 

  7. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83 (1999) 2498 [cond-mat/9908209] [INSPIRE].

    Article  ADS  Google Scholar 

  8. F. Chevy, K. W. Madison and J. Dalibard, Measurement of the Angular Momentum of a Rotating Bose-Einstein Condensate, Phys. Rev. Lett. 85 (2000) 2223 [cond-mat/0005221] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu and W. Ketterle, Vortex Nucleation in a Stirred Bose-Einstein Condensate, Phys. Rev. Lett. 87 (2001) 210402.

    Article  ADS  Google Scholar 

  10. J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle, Observation of Vortex Lattices in Bose-Einstein Condensates, Science 292 (2001) 476.

    Article  ADS  Google Scholar 

  11. E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cim. 20 (1961) 454.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. L. P. Pitaevskii, Vortex Lines in an Imperfect Bose Gas, JETP 13 (1961) 451.

    MathSciNet  Google Scholar 

  13. L. P. Pitaevskii and S. Stringari, Bose-Einstein condensation, vol. 116 in International Series of Monographs on Physics, Clarendon Press, Oxford New York (2003).

  14. E. H. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases, Commun. Math. Phys. 264 (2006) 505.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, 2nd edition (2008) [DOI].

  16. A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys. 81 (2009) 647 [INSPIRE].

    Article  ADS  Google Scholar 

  17. W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kin. Rel. Mod. 6 (2013) 1.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. C. Haljan, I. Coddington, P. Engels and E. A. Cornell, Driving Bose-Einstein condensate vorticity with a rotating normal cloud, Phys. Rev. Lett. 87 (2001) 210403 [cond-mat/0106362] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. L. Fetter and A. A. Svidzinsky, Vortices in a trapped dilute Bose-Einstein condensate, J. Phys. Condens. Matter 13 (2001) R135.

    Article  ADS  Google Scholar 

  20. D. A. Butts and D. S. Rokhsar, Predicted signatures of rotating Bose-Einstein condensates, Nature 397 (1999) 327.

    Article  ADS  Google Scholar 

  21. A. Aftalion and Q. Du, Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime, Phys. Rev. A 64 (2001) 063603.

    Article  ADS  Google Scholar 

  22. R. Seiringer, Gross-Pitaevskii Theory of the Rotating Bose Gas, Commun. Math. Phys. 229 (2002) 491.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. B. P. Anderson, P. C. Haljan, C. E. Wieman and E. A. Cornell, Vortex Precession in Bose-Einstein Condensates: Observations with Filled and Empty Cores, Phys. Rev. Lett. 85 (2000) 2857.

    Article  ADS  Google Scholar 

  24. R. Fletcher, Practical Methods of Optimization, Wiley, Chichester New York (1987) [DOI].

  25. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer (1999) [DOI].

  26. B. Mottelson, Yrast Spectra of Weakly Interacting Bose-Einstein Condensates, Phys. Rev. Lett. 83 (1999) 2695.

    Article  ADS  Google Scholar 

  27. G. M. Kavoulakis, B. Mottelson and C. J. Pethick, Weakly interacting Bose-Einstein condensates under rotation, Phys. Rev. A 62 (2000) 063605.

    Article  ADS  Google Scholar 

  28. A. Shapere and F. Wilczek, Classical Time Crystals, Phys. Rev. Lett. 109 (2012) 160402 [arXiv:1202.2537] [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Wilczek, Quantum Time Crystals, Phys. Rev. Lett. 109 (2012) 160401 [arXiv:1202.2539] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Alekseev, J. Dai and A. J. Niemi, Provenance of classical Hamiltonian time crystals, JHEP 08 (2020) 035 [arXiv:2002.07023] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Dai, A. J. Niemi and X. Peng, Classical Hamiltonian time crystals-general theory and simple examples, New J. Phys. 22 (2020) 085006 [arXiv:2005.00586] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. J. M. Leinaas and J. Myrheim, On the Theory of Identical Particles, Nuovo Cim. B 37 (1977) 1.

    Article  ADS  Google Scholar 

  33. F. Wilczek, Quantum Mechanics of Fractional Spin Particles, Phys. Rev. Lett. 49 (1982) 957 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Iengo and K. Lechner, Anyon quantum mechanics and Chern-Simons theory, Phys. Rept. 213 (1992) 179 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Lerda, Anyons: Quantum mechanics of particles with fractional statistics, vol. 14, Lecture Notes in Physics, Berlin New York, (1992) [DOI] [INSPIRE].

  36. A. Y. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2 [quant-ph/9707021] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. J. Nakamura, S. Liang, G. C. Gardner and M. J. Manfra, Direct observation of anyonic braiding statistics, Nature Phys. 16 (2020) 931.

    Article  ADS  Google Scholar 

  38. E. H. Lieb and R. Seiringer, Proof of Bose-Einstein Condensation for Dilute Trapped Gases, Phys. Rev. Lett. 88 (2002) 170409.

    Article  ADS  Google Scholar 

  39. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer New York, New York (1999) [DOI].

  40. F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012) 251.

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Wilczek, Magnetic Flux, Angular Momentum, and Statistics, Phys. Rev. Lett. 48 (1982) 1144 [INSPIRE].

    Article  ADS  Google Scholar 

  42. K.-P. Marzlin, W. Zhang and E. M. Wright, Vortex Coupler for Atomic Bose-Einstein Condensates, Phys. Rev. Lett. 79 (1997) 4728.

    Article  ADS  Google Scholar 

  43. E. L. Bolda and D. F. Walls, Creation of vortices in a Bose-Einstein condensate by a Raman technique, Phys. Lett. A 246 (1998) 32.

    Article  ADS  Google Scholar 

  44. R. Dum, J. I. Cirac, M. Lewenstein and P. Zoller, Creation of Dark Solitons and Vortices in Bose-Einstein Condensates, Phys. Rev. Lett. 80 (1998) 2972 [cond-mat/9710238] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. E. Leanhardt et al., Imprinting Vortices in a Bose-Einstein Condensate using Topological Phases, Phys. Rev. Lett. 89 (2002) 190403.

    Article  ADS  Google Scholar 

  46. T. W. B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. W. H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  48. W. H. Zurek, Cosmological experiments in condensed matter systems, Phys. Rept. 276 (1996) 177 [cond-mat/9607135] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. R. Anglin and W. H. Zurek, Winding up by a quench: Vortices in the wake of rapid Bose-Einstein condensation, Phys. Rev. Lett. 83 (1999) 1707 [quant-ph/9804035] [INSPIRE].

  50. V. M. H. Ruutu et al., Vortex formation in neutron-irradiated superfluid 3 He as an analogue of cosmological defect formation, Nature 382 (1996) 334 [cond-mat/9512117] [INSPIRE].

  51. V. B. Eltsov, T. W. B. Kibble, M. Krusius, V. M. H. Ruutu and G. E. Volovik, Composite Defect Extends Analogy between Cosmology and 3 He, Phys. Rev. Lett. 85 (2000) 4739 [cond-mat/0007369] [INSPIRE].

  52. C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis and B. P. Anderson, Spontaneous vortices in the formation of Bose-Einstein condensates, Nature 455 (2008) 948.

    Article  ADS  Google Scholar 

  53. D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin and D. S. Hall, Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-Einstein Condensate, Science 329 (2010) 1182.

    Article  ADS  Google Scholar 

  54. D. V. Hutton, Fundamentals of Finite Element Analysis, Engineering Series. McGraw-Hill (2003) [DOI].

  55. J. Reddy, An Introduction to the Finite Element Method. McGraw-Hill Education (2005).

  56. P. E. Gill, W. Murray and M. H. Wright, Practical optimization, Academic Press (1981).

  57. E. G. Birgin and J. M. Martínez, Improving ultimate convergence of an augmented Lagrangian method, Optim. Meth. Software 23 (2008) 177.

    Article  MathSciNet  MATH  Google Scholar 

  58. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand. 49 (1952) 409.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Comput. J. 7 (1964) 149.

    Article  MathSciNet  MATH  Google Scholar 

  60. E. Polak and G. Ribière, Note sur la convergence de directions conjuguées, Revue française d’informatique et de recherche opérationnelle. Série rouge 3 (1969) 35.

  61. J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput. Math. 6 (1996) 207.

Download references

Author information

Authors and Affiliations

  1. Institut Denis Poisson CNRS-UMR 7013, Université de Tours, 37200, Tours, France

    Julien Garaud

  2. Nordita, Stockholm University and Uppsala University, Roslagstullsbacken 23, SE-106 91, Stockholm, Sweden

    Jin Dai & Antti J. Niemi

  3. Pacific Quantum Center, Far Eastern Federal University, 690950 Sukhanova 8, Vladivostok, Russia

    Antti J. Niemi

  4. Department of Physics, Beijing Institute of Technology, Haidian District, Beijing, 100081, China

    Antti J. Niemi

Authors
  1. Julien Garaud
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jin Dai
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Antti J. Niemi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Antti J. Niemi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.04549

Supplementary Information

ESM 1

(GZ 20374 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garaud, J., Dai, J. & Niemi, A.J. Vortex precession and exchange in a Bose-Einstein condensate. J. High Energ. Phys. 2021, 157 (2021). https://doi.org/10.1007/JHEP07(2021)157

Download citation

  • Received: 21 May 2021

  • Accepted: 09 July 2021

  • Published: 21 July 2021

  • DOI: https://doi.org/10.1007/JHEP07(2021)157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Solitons Monopoles and Instantons
  • Spontaneous Symmetry Breaking
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature