Skip to main content

Marginal deformations and RG flows for type IIB S-folds

A preprint version of the article is available at arXiv.

Abstract

We construct a continuous one parameter family of AdS4 × S1 × S5 S-fold solutions of type IIB string theory which have nontrivial SL(2, ℤ) monodromy in the S1 direction. The solutions span a subset of a conformal manifold that contains the known \( \mathcal{N} \) = 4 S-fold SCFT in d = 3, and generically preserve \( \mathcal{N} \) = 2 supersymmetry. We also construct RG flows across dimensions, from AdS5 × S5, dual to \( \mathcal{N} \) = 4, d = 4 SYM compactified with a twisted spatial circle, to various AdS4 ×S1 ×S5 S-fold solutions, dual to d = 3 SCFTs. We construct additional flows between the AdS5 dual of the Leigh-Strassler SCFT and an \( \mathcal{N} \) = 2 S-fold as well as RG flows between various S-folds.

References

  1. G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019 [arXiv:1804.06419] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. N. Bobev, F. F. Gautason, K. Pilch, M. Suh and J. Van Muiden, Janus and J-fold Solutions from Sasaki-Einstein Manifolds, Phys. Rev. D 100 (2019) 081901 [arXiv:1907.11132] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. A. Guarino and C. Sterckx, S-folds and (non-)supersymmetric Janus solutions, JHEP 12 (2019) 113 [arXiv:1907.04177] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. A. Guarino, C. Sterckx and M. Trigiante, \( \mathcal{N} \) = 2 supersymmetric S-folds, JHEP 04 (2020) 050 [arXiv:2002.03692] [INSPIRE].

  6. N. Bobev, F. F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in \( \mathcal{N} \) = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. I. Arav, K. C. M. Cheung, J. P. Gauntlett, M. M. Roberts and C. Rosen, A new family of AdS4 S-folds in type IIB string theory, JHEP 05 (2021) 222 [arXiv:2101.07264] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  8. E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  9. D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The θ-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. Y. Terashima and M. Yamazaki, SL(2, ℝ) Chern-Simons, Liouville, and Gauge Theory on Duality Walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  12. O. J. Ganor, N. P. Moore, H.-Y. Sun and N. R. Torres-Chicon, Janus configurations with SL(2,)-duality twists, strings on mapping tori and a tridiagonal determinant formula, JHEP 07 (2014) 010 [arXiv:1403.2365] [INSPIRE].

  13. D. Gang, N. Kim, M. Romo and M. Yamazaki, Aspects of Defects in 3d-3d Correspondence, JHEP 10 (2016) 062 [arXiv:1510.05011] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. I. Garozzo, G. Lo Monaco and N. Mekareeya, The moduli spaces of S-fold CFTs, JHEP 01 (2019) 046 [arXiv:1810.12323] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. I. Garozzo, G. Lo Monaco and N. Mekareeya, Variations on S-fold CFTs, JHEP 03 (2019) 171 [arXiv:1901.10493] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. I. Garozzo, G. Lo Monaco, N. Mekareeya and M. Sacchi, Supersymmetric Indices of 3d S-fold SCFTs, JHEP 08 (2019) 008 [arXiv:1905.07183] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. I. Garozzo, N. Mekareeya and M. Sacchi, Duality walls in the 4d \( \mathcal{N} \) = 2 SU(N) gauge theory with 2N flavours, JHEP 11 (2019) 053 [arXiv:1909.02832] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. I. Garozzo, N. Mekareeya, M. Sacchi and G. Zafrir, Symmetry enhancement and duality walls in 5d gauge theories, JHEP 06 (2020) 159 [arXiv:2003.07373] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. E. Beratto, N. Mekareeya and M. Sacchi, Marginal operators and supersymmetry enhancement in 3d S-fold SCFTs, JHEP 12 (2020) 017 [arXiv:2009.10123] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. A. Giambrone, E. Malek, H. Samtleben and M. Trigiante, Global Properties of the Conformal Manifold for S-Fold Backgrounds, arXiv:2103.10797 [INSPIRE].

  22. M. Günaydin, L. J. Romans and N. P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. J. H. Schwarz, Covariant Field Equations of Chiral N = 2 D = 10 Supergravity, Nucl. Phys. B 226 (1983) 269 [INSPIRE].

    ADS  Article  Google Scholar 

  24. P. S. Howe and P. C. West, The Complete N=2, D=10 Supergravity, Nucl. Phys. B 238 (1984) 181.

    ADS  MathSciNet  Article  Google Scholar 

  25. N. Bobev, H. Elvang, U. Kol, T. Olson and S. S. Pufu, Holography for \( \mathcal{N} \) = 1 on S4, JHEP 10 (2016) 095 [arXiv:1605.00656] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  26. T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    ADS  Article  Google Scholar 

  27. D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  28. A. Donos and J. P. Gauntlett, Flowing from AdS5 to AdS3 with T1,1, JHEP 08 (2014) 006 [arXiv:1404.7133] [INSPIRE].

    ADS  Article  Google Scholar 

  29. S. Jain, N. Kundu, K. Sen, A. Sinha and S. P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].

    ADS  Article  Google Scholar 

  30. A. Donos, J. P. Gauntlett and O. Sosa-Rodriguez, Anisotropic plasmas from axion and dilaton deformations, JHEP 11 (2016) 002 [arXiv:1608.02970] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. A. Donos and J. P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].

    ADS  Article  Google Scholar 

  32. D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. R. G. Leigh and M. J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. T. Maxfield, Supergravity Backgrounds for Four-Dimensional Maximally Supersymmetric Yang-Mills, JHEP 02 (2017) 065 [arXiv:1609.05905] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. I. Arav, K. C. M. Cheung, J. P. Gauntlett, M. M. Roberts and C. Rosen, Spatially modulated and supersymmetric mass deformations of \( \mathcal{N} \) = 4 SYM, JHEP 11 (2020) 156 [arXiv:2007.15095] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. A. Guarino and C. Sterckx, S-folds and holographic RG flows on the D3-brane, JHEP 06 (2021) 051 [arXiv:2103.12652] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. M. de Roo, Gauged N = 4 Matter Couplings, Phys. Lett. B 156 (1985) 331 [INSPIRE].

    ADS  Article  Google Scholar 

  39. M. de Roo, Matter Coupling in N = 4 Supergravity, Nucl. Phys. B 255 (1985) 515 [INSPIRE].

    ADS  Article  Google Scholar 

  40. N. Bobev, A. Kundu, K. Pilch and N. P. Warner, Supersymmetric Charged Clouds in AdS5 , JHEP 03 (2011) 070 [arXiv:1005.3552] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  41. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The Supergravity dual of N = 1 superYang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  42. E. Perlmutter, L. Rastelli, C. Vafa and I. Valenzuela, A CFT Distance Conjecture, arXiv:2011.10040 [INSPIRE].

  43. O. Lunin and J. M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. J. P. Gauntlett, S. Lee, T. Mateos and D. Waldram, Marginal deformations of field theories with AdS4 duals, JHEP 08 (2005) 030 [hep-th/0505207] [INSPIRE].

    ADS  Article  Google Scholar 

  45. N. Bobev, P. Bomans, F. F. Gautason and V. S. Min, Marginal deformations from type IIA supergravity, SciPost Phys. 10 (2021) 140 [arXiv:2103.02038] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP 01 (2017) 124 [arXiv:1605.05730] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. A. Ashmore, Marginal deformations of 3d \( \mathcal{N} \) = 2 CFTs from AdS4 backgrounds in generalised geometry, JHEP 12 (2018) 060 [arXiv:1809.03503] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. N. Bobev, F. F. Gautason and J. van Muiden, The Holographic Conformal Manifold of 3d \( \mathcal{N} \) = 2 S-fold SCFTs, arXiv:2104.00977 [INSPIRE].

  49. M. Günaydin, L. J. Romans and N. P. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].

    ADS  Article  Google Scholar 

  50. A. Khavaev and N. P. Warner, A Class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome P. Gauntlett.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.15201

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arav, I., Gauntlett, J.P., Roberts, M.M. et al. Marginal deformations and RG flows for type IIB S-folds. J. High Energ. Phys. 2021, 151 (2021). https://doi.org/10.1007/JHEP07(2021)151

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2021)151

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Supersymmetric Gauge Theory