Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation

09 August 2018

Hao Qiao, ChunYu Lu, … SiGuang Wang

Signal identification with Kalman Filter towards background-free neutrinoless double beta decay searches in gaseous detectors

17 June 2021

Tao Li, Shaobo Wang, … An’ni Zou

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

28 January 2021

The NEXT collaboration, M. Kekic, … N. Yahlali

Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

12 October 2022

A. Abed Abud, B. Abi, … R. Zwaska

Neural-network-driven proton decay sensitivity in the p → ν ¯ $$ \overline{\nu} $$ K+ channel using large liquid argon time projection chambers

26 April 2021

C. Alt, B. Radics & A. Rubbia

Demonstration of the event identification capabilities of the NEXT-White detector

04 October 2019

The NEXT collaboration, P. Ferrario, … N. Yahlali

Upgrade for Phase II of the Gerda experiment

18 May 2018

GERDA Collaboration, M. Agostini, … G. Zuzel

Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of $$^{136}$$ 136 Xe

02 September 2020

F. Agostini, S. E. M. Ahmed Maouloud, … DARWIN Collaboration

Identification of the cosmogenic $$^{11}$$ 11 C background in large volumes of liquid scintillators with Borexino

07 December 2021

M. Agostini, K. Altenmüller, … G. Zuzel

Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 21 July 2021

Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

  • The NEXT collaboration,
  • A. Simón6,
  • Y. Ifergan6,7,
  • A. B. Redwine6,
  • R. Weiss-Babai6 nAff27,
  • L. Arazi  ORCID: orcid.org/0000-0002-7624-58276,
  • C. Adams20,
  • H. Almazán17,
  • V. Álvarez25,
  • B. Aparicio18,
  • A. I. Aranburu18,
  • I. J. Arnquist23,
  • C. D. R Azevedo4,
  • K. Bailey20,
  • F. Ballester25,
  • J. M. Benlloch-Rodríguez17,
  • F. I. G. M. Borges14,
  • N. Byrnes3,
  • S. Cárcel22,
  • J. V. Carrión22,
  • S. Cebrián26,
  • E. Church23,
  • C. A. N. Conde14,
  • T. Contreras11,
  • F. P. Cossío9,18,
  • A. A. Denisenko2,
  • G. Díaz24,
  • J. Díaz22,
  • J. Escada14,
  • R. Esteve25,
  • R. Felkai6,22,
  • L. M. P. Fernandes13,
  • P. Ferrario9,17,
  • A. L. Ferreira4,
  • F. Foss2,
  • E. D. C. Freitas13,
  • Z. Freixa9,27,
  • J. Generowicz17,
  • A. Goldschmidt8,
  • J. J. Gómez-Cadenas9,17,
  • R. González17,
  • D. González-Díaz24,
  • S. Gosh11,
  • R. Guenette11,
  • R. M. Gutiérrez10,
  • J. Haefner11,
  • K. Hafidi20,
  • J. Hauptman1,
  • C. A. O. Henriques13,
  • J. A. Hernando Morata24,
  • P. Herrero16,17,
  • V. Herrero25,
  • J. Ho11,
  • B. J. P. Jones3,
  • M. Kekic24,
  • L. Labarga21,
  • A. Laing3,
  • P. Lebrun5,
  • N. López-March22,
  • M. Losada10,
  • R. D. P. Mano13,
  • J. Martín-Albo11,22,
  • A. Martínez22,
  • M. Martínez-Vara17,22,
  • G. Martínez-Lema6,
  • A. D. McDonald3,
  • Z.-E. Meziani20,
  • F. Monrabal9,17,
  • C. M. B. Monteiro13,
  • F. J. Mora25,
  • J. Muñoz Vidal22,
  • C. Newhouse2,
  • P. Novella22,
  • D. R. Nygren3,
  • E. Oblak17,
  • M. Odriozola-Gimeno17,
  • B. Palmeiro22,24,
  • A. Para5,
  • J. Pérez12,
  • M. Querol22,
  • J. Renner22,
  • L. Ripoll19,
  • I. Rivilla9,17,
  • Y. Rodríguez García10,
  • J. Rodríguez25,
  • C. Rogero16,
  • L. Rogers3,
  • B. Romeo12,17,
  • C. Romo-Luque22,
  • F. P. Santos14,
  • J. M. F. dos Santos13,
  • M. Sorel22,
  • C. Stanford11,
  • J. M. R. Teixeira13,
  • P. Thapa2,
  • J. F. Toledo25,
  • J. Torrent17,
  • A. Usón22,
  • J. F. C. A. Veloso4,
  • T. T. Vuong2,
  • R. Webb15,
  • J. T. White15,
  • K. Woodruff3 &
  • …
  • N. Yahlali22 

Journal of High Energy Physics volume 2021, Article number: 146 (2021) Cite this article

  • 274 Accesses

  • 2 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ∼ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ∼ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ∼ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e−e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. F.T. Avignone, III, S.R. Elliott and J. Engel, Double beta decay, majorana neutrinos, and neutrino mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105.

  3. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].

    Article  Google Scholar 

  5. M.J. Dolinski, A.W. Poon and W. Rodejohann, Neutrinoless double-beta decay: status and prospects, Annu. Rev. Nucl. Part. Sci. 69 (2019) 219.

    Article  ADS  Google Scholar 

  6. GERDA collaboration, Final results of GERDA on the search for neutrinoless double-β decay, Phys. Rev. Lett. 125 (2020) 252502 [arXiv:2009.06079] [INSPIRE].

  7. Majorana collaboration, A search for neutrinoless double-beta decay in 76Ge with 26 kg-yr of exposure from the Majorana demonstrator, Phys. Rev. C 100 (2019) 025501 [arXiv:1902.02299] [INSPIRE].

  8. LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless Double beta decay (LEGEND), AIP Conf. Proc. 1894 (2017) 020027 [arXiv:1709.01980] [INSPIRE].

  9. KamLAND-Zen collaboration, Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [Addendum ibid. 117 (2016) 109903] [arXiv:1605.02889] [INSPIRE].

  10. I. Shimizu and M. Chen, Double beta decay experiments with loaded liquid scintillator, Front. Phys. 7 (2019) 33.

    Article  Google Scholar 

  11. EXO collaboration, Search for neutrinoless double-beta decay with the upgraded EXO-200 detector, Phys. Rev. Lett. 120 (2018) 072701 [arXiv:1707.08707] [INSPIRE].

  12. nEXO collaboration, nEXO pre-conceptual design report, arXiv:1805.11142 [INSPIRE].

  13. DARWIN collaboration, Sensitivity of the darwin observatory to the neutrinoless double beta decay of 136Xe, Eur. Phys. J. C 80 (2020) 808.

  14. J.J. Gomez-Cadenas, Status and prospects of the NEXT experiment for neutrinoless double beta decay searches, arXiv:1906.01743 [INSPIRE].

  15. X. Chen et al., PandaX-III: searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers, Sci. China Phys. Mech. Astron. 60 (2017) 061011 [arXiv:1610.08883] [INSPIRE].

    Article  ADS  Google Scholar 

  16. CUORE collaboration, Improved limit on neutrinoless double-beta decay in 130Te with CUORE, Phys. Rev. Lett. 124 (2020) 122501 [arXiv:1912.10966] [INSPIRE].

  17. SNO+ collaboration, Current status and future prospects of the SNO+ experiment, Adv. High Energy Phys. 2016 (2016) 6194250 [arXiv:1508.05759] [INSPIRE].

  18. CUPID collaboration, CUPID pre-CDR, arXiv:1907.09376 [INSPIRE].

  19. CUPID collaboration, New limit for neutrinoless double-beta decay of 100Mo from the CUPID-Mo experiment, Phys. Rev. Lett. 126 (2021) 181802 [arXiv:2011.13243] [INSPIRE].

  20. AMORE collaboration, First results from the AMoRE-Pilot neutrinoless double beta decay experiment, Eur. Phys. J. C 79 (2019) 791.

  21. D. Nygren, High-pressure xenon gas electroluminescent TPC for 0nu beta beta-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Bolotnikov and B. Ramsey, The spectroscopic properties of high-pressure xenon, Nucl. Instrum. Meth. A 396 (1997) 360.

    Article  ADS  Google Scholar 

  23. NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE].

  24. XENON collaboration, Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C 80 (2020) 785.

  25. R. Lüscher et al., Search for beta beta decay in Xe-136: New results from the Gotthard experiment, Phys. Lett. B 434 (1998) 407 [INSPIRE].

    Article  ADS  Google Scholar 

  26. NEXT collaboration, The Next White (NEW) detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE].

  27. NEXT collaboration, Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, arXiv:2005.06467 [INSPIRE].

  28. B.J.P. Jones, A.D. McDonald and D.R. Nygren, Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay, 2016 JINST 11 P12011 [arXiv:1609.04019] [INSPIRE].

  29. A.D. McDonald et al., Demonstration of single barium ion sensitivity for neutrinoless double beta decay using single molecule fluorescence imaging, Phys. Rev. Lett. 120 (2018) 132504 [arXiv:1711.04782] [INSPIRE].

    Article  ADS  Google Scholar 

  30. N. Byrnesa et al., Progress toward barium tagging in high pressure xenon gas with single molecule fluorescence imaging, J. Phys. Conf. Ser. 1312 (2019) 012001.

    Article  Google Scholar 

  31. P. Thapa et al., Barium chemosensors with dry-phase fluorescence for neutrinoless double beta decay, Sci. Rep. 9 (2019) 15097.

    Article  ADS  Google Scholar 

  32. I. Rivilla et al., Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments, Nature 583 (2020) 48 [INSPIRE].

    Article  ADS  Google Scholar 

  33. NEXT collaboration, Sensitivity of NEXT-100 to neutrinoless double beta decay, JHEP 05 (2016) 159 [arXiv:1511.09246] [INSPIRE].

  34. NEXT collaboration, First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP 01 (2016) 104 [arXiv:1507.05902] [INSPIRE].

  35. NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, JHEP 10 (2019) 052 [arXiv:1905.13141] [INSPIRE].

  36. NEXT collaboration, Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment, JHEP 01 (2021) 189 [arXiv:2009.10783] [INSPIRE].

  37. W.H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62 (1972) 55.

    Article  ADS  Google Scholar 

  38. L.B. Lucy, An iterative technique for the rectification of observed distributions, Astron. J. 79 (1974) 745 [INSPIRE].

    Article  ADS  Google Scholar 

  39. E.D.C. Freitas et al., Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0nu beta beta) search, Phys. Lett. B 684 (2010) 205 [INSPIRE].

    Article  ADS  Google Scholar 

  40. NEXT collaboration, Calibration of the NEXT-White detector using 83mKr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE].

  41. T. Cormen et al., Introduction to algorithms, 2nd edition, McGraw-Hill Higher Eduation, U.S.A. (2001).

  42. J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. thesis, Valencia University, IFIC, Valencia, Spain (2015).

  43. NEXT collaboration, Electron drift properties in high pressure gaseous xenon, 2018 JINST 13 P07013 [arXiv:1804.01680] [INSPIRE].

  44. S. van der Walt et al., scikit-image: image processing in Python, PeerJ 2 (2014) e453.

    Article  Google Scholar 

  45. R. Felkai et al., Helium-Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs, Nucl. Instrum. Meth. A 905 (2018) 82 [arXiv:1710.05600] [INSPIRE].

    Article  ADS  Google Scholar 

  46. NEXT collaboration, Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures, 2019 JINST 14 P08009 [arXiv:1902.05544] [INSPIRE].

  47. NEXT collaboration, Low-diffusion Xe-He gas mixtures for rare-event detection: Electroluminescence Yield, JHEP 04 (2020) 034 [arXiv:1906.03984] [INSPIRE].

  48. C.D.R. Azevedo et al., An homeopathic cure to pure Xenon large diffusion, 2016 JINST 11 C02007 [arXiv:1511.07189] [INSPIRE].

  49. NEXT collaboration, Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection, Phys. Lett. B 773 (2017) 663 [arXiv:1704.01623] [INSPIRE].

  50. NEXT collaboration, Electroluminescence TPCs at the thermal diffusion limit, JHEP 01 (2019) 027 [arXiv:1806.05891] [INSPIRE].

  51. NEXT collaboration, Application and performance of an ML-EM algorithm in NEXT, 2017 JINST 12 P08009 [arXiv:1705.10270] [INSPIRE].

Download references

Author information

Author notes
  1. R. Weiss-Babai

    Present address: Soreq Nuclear Research Center, Yavne, Israel

Authors and Affiliations

  1. Department of Physics and Astronomy, Iowa State University, Ames, Iowa, U.S.A.

    J. Hauptman

  2. Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, U.S.A.

    A. A. Denisenko, F. Foss, C. Newhouse, P. Thapa & T. T. Vuong

  3. Department of Physics, University of Texas at Arlington, Arlington, Texas, U.S.A.

    N. Byrnes, B. J. P. Jones, A. Laing, A. D. McDonald, D. R. Nygren, L. Rogers & K. Woodruff

  4. Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), Universidade de Aveiro, Aveiro, Portugal

    C. D. R Azevedo, A. L. Ferreira & J. F. C. A. Veloso

  5. Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A.

    P. Lebrun & A. Para

  6. Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

    A. Simón, Y. Ifergan, A. B. Redwine, R. Weiss-Babai, L. Arazi, R. Felkai & G. Martínez-Lema

  7. Nuclear Research Center Negev, Beer-Sheva, Israel

    Y. Ifergan

  8. Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.

    A. Goldschmidt

  9. Ikerbasque (Basque Foundation for Science), Bilbao, Spain

    F. P. Cossío, P. Ferrario, Z. Freixa, J. J. Gómez-Cadenas, F. Monrabal & I. Rivilla

  10. Centro de Investigación en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Bogotá, Colombia

    R. M. Gutiérrez, M. Losada & Y. Rodríguez García

  11. Department of Physics, Harvard University, Cambridge, Massachusetts, U.S.A.

    T. Contreras, S. Gosh, R. Guenette, J. Haefner, J. Ho, J. Martín-Albo & C. Stanford

  12. Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Spain

    J. Pérez & B. Romeo

  13. LIBPhys, Universidade de Coimbra, Coimbra, Portugal

    L. M. P. Fernandes, E. D. C. Freitas, C. A. O. Henriques, R. D. P. Mano, C. M. B. Monteiro, J. M. F. dos Santos & J. M. R. Teixeira

  14. LIP, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal

    F. I. G. M. Borges, C. A. N. Conde, J. Escada & F. P. Santos

  15. Department of Physics and Astronomy, Texas A&M University, College Station, Texas, U.S.A.

    R. Webb & J. T. White

  16. Materials Physics Center (CFM), CSIC & University of the Basque Country (UPV/EHU), Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain

    P. Herrero & C. Rogero

  17. Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain

    H. Almazán, J. M. Benlloch-Rodríguez, P. Ferrario, J. Generowicz, J. J. Gómez-Cadenas, R. González, P. Herrero, M. Martínez-Vara, F. Monrabal, E. Oblak, M. Odriozola-Gimeno, I. Rivilla, B. Romeo & J. Torrent

  18. Faculty of Chemistry, University of the Basque Country (UPV/EHU), Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain

    B. Aparicio, A. I. Aranburu & F. P. Cossío

  19. Escola Politècnica Superior, Universitat de Girona, Girona, Spain

    L. Ripoll

  20. Argonne National Laboratory, Lemont, Illinois, U.S.A.

    C. Adams, K. Bailey, K. Hafidi & Z.-E. Meziani

  21. Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain

    L. Labarga

  22. Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain

    S. Cárcel, J. V. Carrión, J. Díaz, R. Felkai, N. López-March, J. Martín-Albo, A. Martínez, M. Martínez-Vara, J. Muñoz Vidal, P. Novella, B. Palmeiro, M. Querol, J. Renner, C. Romo-Luque, M. Sorel, A. Usón & N. Yahlali

  23. Pacific Northwest National Laboratory, Richland, Washington, U.S.A.

    I. J. Arnquist & E. Church

  24. Instituto Gallego de Física de Altas Energías, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

    G. Díaz, D. González-Díaz, J. A. Hernando Morata, M. Kekic & B. Palmeiro

  25. Instituto de Instrumentación para Imagen Molecular (I3M), CSIC and Univ. Politècnica de València, Valencia, Spain

    V. Álvarez, F. Ballester, R. Esteve, V. Herrero, F. J. Mora, J. Rodríguez & J. F. Toledo

  26. Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain

    S. Cebrián

  27. Soreq Nuclear Research Center, Yavne, Israel

    Z. Freixa

Authors
  1. A. Simón
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Y. Ifergan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. A. B. Redwine
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. R. Weiss-Babai
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. L. Arazi
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. C. Adams
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. H. Almazán
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. V. Álvarez
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. B. Aparicio
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. A. I. Aranburu
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. I. J. Arnquist
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. C. D. R Azevedo
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. K. Bailey
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. F. Ballester
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. J. M. Benlloch-Rodríguez
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. F. I. G. M. Borges
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. N. Byrnes
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. S. Cárcel
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. J. V. Carrión
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. S. Cebrián
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. E. Church
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. C. A. N. Conde
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. T. Contreras
    View author publications

    You can also search for this author in PubMed Google Scholar

  24. F. P. Cossío
    View author publications

    You can also search for this author in PubMed Google Scholar

  25. A. A. Denisenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  26. G. Díaz
    View author publications

    You can also search for this author in PubMed Google Scholar

  27. J. Díaz
    View author publications

    You can also search for this author in PubMed Google Scholar

  28. J. Escada
    View author publications

    You can also search for this author in PubMed Google Scholar

  29. R. Esteve
    View author publications

    You can also search for this author in PubMed Google Scholar

  30. R. Felkai
    View author publications

    You can also search for this author in PubMed Google Scholar

  31. L. M. P. Fernandes
    View author publications

    You can also search for this author in PubMed Google Scholar

  32. P. Ferrario
    View author publications

    You can also search for this author in PubMed Google Scholar

  33. A. L. Ferreira
    View author publications

    You can also search for this author in PubMed Google Scholar

  34. F. Foss
    View author publications

    You can also search for this author in PubMed Google Scholar

  35. E. D. C. Freitas
    View author publications

    You can also search for this author in PubMed Google Scholar

  36. Z. Freixa
    View author publications

    You can also search for this author in PubMed Google Scholar

  37. J. Generowicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  38. A. Goldschmidt
    View author publications

    You can also search for this author in PubMed Google Scholar

  39. J. J. Gómez-Cadenas
    View author publications

    You can also search for this author in PubMed Google Scholar

  40. R. González
    View author publications

    You can also search for this author in PubMed Google Scholar

  41. D. González-Díaz
    View author publications

    You can also search for this author in PubMed Google Scholar

  42. S. Gosh
    View author publications

    You can also search for this author in PubMed Google Scholar

  43. R. Guenette
    View author publications

    You can also search for this author in PubMed Google Scholar

  44. R. M. Gutiérrez
    View author publications

    You can also search for this author in PubMed Google Scholar

  45. J. Haefner
    View author publications

    You can also search for this author in PubMed Google Scholar

  46. K. Hafidi
    View author publications

    You can also search for this author in PubMed Google Scholar

  47. J. Hauptman
    View author publications

    You can also search for this author in PubMed Google Scholar

  48. C. A. O. Henriques
    View author publications

    You can also search for this author in PubMed Google Scholar

  49. J. A. Hernando Morata
    View author publications

    You can also search for this author in PubMed Google Scholar

  50. P. Herrero
    View author publications

    You can also search for this author in PubMed Google Scholar

  51. V. Herrero
    View author publications

    You can also search for this author in PubMed Google Scholar

  52. J. Ho
    View author publications

    You can also search for this author in PubMed Google Scholar

  53. B. J. P. Jones
    View author publications

    You can also search for this author in PubMed Google Scholar

  54. M. Kekic
    View author publications

    You can also search for this author in PubMed Google Scholar

  55. L. Labarga
    View author publications

    You can also search for this author in PubMed Google Scholar

  56. A. Laing
    View author publications

    You can also search for this author in PubMed Google Scholar

  57. P. Lebrun
    View author publications

    You can also search for this author in PubMed Google Scholar

  58. N. López-March
    View author publications

    You can also search for this author in PubMed Google Scholar

  59. M. Losada
    View author publications

    You can also search for this author in PubMed Google Scholar

  60. R. D. P. Mano
    View author publications

    You can also search for this author in PubMed Google Scholar

  61. J. Martín-Albo
    View author publications

    You can also search for this author in PubMed Google Scholar

  62. A. Martínez
    View author publications

    You can also search for this author in PubMed Google Scholar

  63. M. Martínez-Vara
    View author publications

    You can also search for this author in PubMed Google Scholar

  64. G. Martínez-Lema
    View author publications

    You can also search for this author in PubMed Google Scholar

  65. A. D. McDonald
    View author publications

    You can also search for this author in PubMed Google Scholar

  66. Z.-E. Meziani
    View author publications

    You can also search for this author in PubMed Google Scholar

  67. F. Monrabal
    View author publications

    You can also search for this author in PubMed Google Scholar

  68. C. M. B. Monteiro
    View author publications

    You can also search for this author in PubMed Google Scholar

  69. F. J. Mora
    View author publications

    You can also search for this author in PubMed Google Scholar

  70. J. Muñoz Vidal
    View author publications

    You can also search for this author in PubMed Google Scholar

  71. C. Newhouse
    View author publications

    You can also search for this author in PubMed Google Scholar

  72. P. Novella
    View author publications

    You can also search for this author in PubMed Google Scholar

  73. D. R. Nygren
    View author publications

    You can also search for this author in PubMed Google Scholar

  74. E. Oblak
    View author publications

    You can also search for this author in PubMed Google Scholar

  75. M. Odriozola-Gimeno
    View author publications

    You can also search for this author in PubMed Google Scholar

  76. B. Palmeiro
    View author publications

    You can also search for this author in PubMed Google Scholar

  77. A. Para
    View author publications

    You can also search for this author in PubMed Google Scholar

  78. J. Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  79. M. Querol
    View author publications

    You can also search for this author in PubMed Google Scholar

  80. J. Renner
    View author publications

    You can also search for this author in PubMed Google Scholar

  81. L. Ripoll
    View author publications

    You can also search for this author in PubMed Google Scholar

  82. I. Rivilla
    View author publications

    You can also search for this author in PubMed Google Scholar

  83. Y. Rodríguez García
    View author publications

    You can also search for this author in PubMed Google Scholar

  84. J. Rodríguez
    View author publications

    You can also search for this author in PubMed Google Scholar

  85. C. Rogero
    View author publications

    You can also search for this author in PubMed Google Scholar

  86. L. Rogers
    View author publications

    You can also search for this author in PubMed Google Scholar

  87. B. Romeo
    View author publications

    You can also search for this author in PubMed Google Scholar

  88. C. Romo-Luque
    View author publications

    You can also search for this author in PubMed Google Scholar

  89. F. P. Santos
    View author publications

    You can also search for this author in PubMed Google Scholar

  90. J. M. F. dos Santos
    View author publications

    You can also search for this author in PubMed Google Scholar

  91. M. Sorel
    View author publications

    You can also search for this author in PubMed Google Scholar

  92. C. Stanford
    View author publications

    You can also search for this author in PubMed Google Scholar

  93. J. M. R. Teixeira
    View author publications

    You can also search for this author in PubMed Google Scholar

  94. P. Thapa
    View author publications

    You can also search for this author in PubMed Google Scholar

  95. J. F. Toledo
    View author publications

    You can also search for this author in PubMed Google Scholar

  96. J. Torrent
    View author publications

    You can also search for this author in PubMed Google Scholar

  97. A. Usón
    View author publications

    You can also search for this author in PubMed Google Scholar

  98. J. F. C. A. Veloso
    View author publications

    You can also search for this author in PubMed Google Scholar

  99. T. T. Vuong
    View author publications

    You can also search for this author in PubMed Google Scholar

  100. R. Webb
    View author publications

    You can also search for this author in PubMed Google Scholar

  101. J. T. White
    View author publications

    You can also search for this author in PubMed Google Scholar

  102. K. Woodruff
    View author publications

    You can also search for this author in PubMed Google Scholar

  103. N. Yahlali
    View author publications

    You can also search for this author in PubMed Google Scholar

Consortia

The NEXT collaboration

Corresponding authors

Correspondence to A. Simón or L. Arazi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2102.11931

NEXT Co-spokesperson. (J. J. Gómez-Cadenas, D. R. Nygren)

Deceased. (J. T. White)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The NEXT collaboration., Simón, A., Ifergan, Y. et al. Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution. J. High Energ. Phys. 2021, 146 (2021). https://doi.org/10.1007/JHEP07(2021)146

Download citation

  • Received: 17 March 2021

  • Accepted: 24 June 2021

  • Published: 21 July 2021

  • DOI: https://doi.org/10.1007/JHEP07(2021)146

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dark Matter and Double Beta Decay (experiments)
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.