Skip to main content

(2, 2) Scattering and the celestial torus

A preprint version of the article is available at arXiv.

Abstract

Analytic continuation from Minkowski space to (2, 2) split signature spacetime has proven to be a powerful tool for the study of scattering amplitudes. Here we show that, under this continuation, null infinity becomes the product of a null interval with a celestial torus (replacing the celestial sphere) and has only one connected component. Spacelike and timelike infinity are time-periodic quotients of AdS3. These three components of infinity combine to an S3 represented as a toric fibration over the interval. Privileged scattering states of scalars organize into SL(2, ℝ)L ×SL(2, ℝ)R conformal primary wave functions and their descendants with real integral or half-integral conformal weights, giving the normally continuous scattering problem a discrete character.

References

  1. [1]

    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    C. Cheung, On-Shell Recursion Relations for Generic Theories, JHEP 03 (2010) 098 [arXiv:0808.0504] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    L. J. Mason and D. Skinner, Scattering Amplitudes and BCFW Recursion in Twistor Space, JHEP 01 (2010) 064 [arXiv:0903.2083] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in Twistor Space, JHEP 03 (2010) 110 [arXiv:0903.2110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    R. Britto, Loop Amplitudes in Gauge Theories: Modern Analytic Approaches, J. Phys. A 44 (2011) 454006 [arXiv:1012.4493] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].

  9. [9]

    H. Ooguri and C. Vafa, Geometry of N = 2 strings, Nucl. Phys. B 361 (1991) 469 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    S. Stieberger and T. R. Taylor, Symmetries of Celestial Amplitudes, Phys. Lett. B 793 (2019) 141 [arXiv:1812.01080] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    M. Pate, A.-M. Raclariu, A. Strominger and E. Y. Yuan, Celestial Operator Products of Gluons and Gravitons, arXiv:1910.07424 [INSPIRE].

  14. [14]

    S. Banerjee, S. Ghosh and R. Gonzo, BMS symmetry of celestial OPE, JHEP 04 (2020) 130 [arXiv:2002.00975] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    S. Banerjee and S. Ghosh, MHV Gluon Scattering Amplitudes from Celestial Current Algebras, arXiv:2011.00017 [INSPIRE].

  16. [16]

    A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic Symmetry Algebras for Gauge Theory and Gravity, arXiv:2103.03961 [INSPIRE].

  17. [17]

    N. Arkani-Hamed, M. Pate, A.-M. Raclariu and A. Strominger, Celestial Amplitudes from UV to IR, arXiv:2012.04208 [INSPIRE].

  18. [18]

    L. J. Mason, Global anti-self-dual Yang-Mills fields in split signature and their scattering, math-ph/0505039 [INSPIRE].

  19. [19]

    E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference, (2001) [hep-th/0106109] [INSPIRE].

  20. [20]

    A. Ashtekar and R. O. Hansen, A unified treatment of null and spatial infinity in general relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978) 1542 [INSPIRE].

  21. [21]

    A. Ashtekar and J. D. Romano, Spatial infinity as a boundary of space-time, Class. Quant. Grav. 9 (1992) 1069 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    J. de Boer and S. N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    M. Henneaux and C. Troessaert, BMS Group at Spatial Infinity: the Hamiltonian (ADM) approach, JHEP 03 (2018) 147 [arXiv:1801.03718] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    J. M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity, arXiv:1906.07810 [INSPIRE].

  27. [27]

    M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory, Phys. Rev. D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class. Quant. Grav. 36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    A. Puhm, Conformally Soft Theorem in Gravity, JHEP 09 (2020) 130 [arXiv:1905.09799] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Raclariu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.09591

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atanasov, A., Ball, A., Melton, W. et al. (2, 2) Scattering and the celestial torus. J. High Energ. Phys. 2021, 83 (2021). https://doi.org/10.1007/JHEP07(2021)083

Download citation

Keywords

  • Scattering Amplitudes
  • Space-Time Symmetries