Skip to main content

Supersymmetric interpretation of the muon g – 2 anomaly

A preprint version of the article is available at arXiv.

Abstract

The Fermilab Muon g 2 collaboration recently announced the first result of measurement of the muon anomalous magnetic moment (g 2), which confirmed the previous result at the Brookhaven National Laboratory and thus the discrepancy with its Standard Model prediction. We revisit low-scale supersymmetric models that are naturally capable to solve the muon g 2 anomaly, focusing on two distinct scenarios: chargino-contribution dominated and pure-bino-contribution dominated scenarios. It is shown that the slepton pair-production searches have excluded broad parameter spaces for both two scenarios, but they are not closed yet. For the chargino-dominated scenario, the models with \( {m}_{{\tilde{\mu}}_{\mathrm{L}}}\gtrsim {m}_{{\tilde{\chi}}_1^{\pm }} \) are still widely allowed. For the bino-dominated scenario, we find that, although slightly non-trivial, the region with low tan β with heavy higgsinos is preferred. In the case of universal slepton masses, the low mass regions with \( {m}_{\tilde{\mu}} \) ≲ 230 GeV can explain the g 2 anomaly while satisfying the LHC constraints. Furthermore, we checked that the stau-bino coannihilation works properly to realize the bino thermal relic dark matter. We also investigate heavy staus case for the bino-dominated scenario, where the parameter region that can explain the muon g 2 anomaly is stretched to \( {m}_{\tilde{\mu}} \) ≲ 1.3 TeV.

References

  1. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

    ADS  Article  Google Scholar 

  2. S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

    ADS  Article  Google Scholar 

  3. G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].

    ADS  Article  Google Scholar 

  4. M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].

    ADS  Article  Google Scholar 

  5. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \( \alpha \left({m}_Z^2\right) \), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

  6. A. Keshavarzi, D. Nomura and T. Teubner, g 2 of charged leptons, \( \alpha \left({M}_Z^2\right) \), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].

  7. A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic vacuum polarization: (g 2)μ versus global electroweak fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].

    ADS  Article  Google Scholar 

  8. A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g 2 andα connection, Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].

    ADS  Article  Google Scholar 

  9. B. Malaescu and M. Schott, Impact of correlations between aμ and αQED on the EW fit, Eur. Phys. J. C 81 (2021) 46 [arXiv:2008.08107] [INSPIRE].

    ADS  Article  Google Scholar 

  10. G. Colangelo, M. Hoferichter and P. Stoffer, Constraints on the two-pion contribution to hadronic vacuum polarization, Phys. Lett. B 814 (2021) 136073 [arXiv:2010.07943] [INSPIRE].

    Article  Google Scholar 

  11. Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 89 (2002) 101804 [Erratum ibid. 89 (2002) 129903] [hep-ex/0208001] [INSPIRE].

  12. Muon g-2 collaboration, Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].

  13. Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  14. E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor, The 2018 CODATA recommended values of the fundamental physical constants, web version 8.0, http://physics.nist.gov/constants, (2019).

  15. Muon g-2 collaboration, Muon (g 2) technical design report, arXiv:1501.06858 [INSPIRE].

  16. J-PARC g-2 collaboration, Measurement of muon g 2 and EDM with an ultra-cold muon beam at J-PARC, Nucl. Phys. B Proc. Suppl. 218 (2011) 242 [INSPIRE].

  17. M. Abe et al., A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, PTEP 2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE].

  18. C. Polly on behalf of Muon g-2 collaboration, First results from the muon g 2 experiment at Fermilab, https://www.youtube.com/watch?v=81PfYnpuOPA, seminar talk given at Fermilab, Batavia, IL, U.S.A., 7 April 2021.

  19. Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

  20. E.-H. Chao, R.J. Hudspith, A. Gérardin, J.R. Green, H.B. Meyer and K. Ottnad, Hadronic light-by-light contribution to (g 2)μ from lattice QCD: a complete calculation, arXiv:2104.02632 [INSPIRE].

  21. J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g 2)μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].

  22. U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g 2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].

  23. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  24. B. Zhu, R. Ding and T. Li, Higgs mass and muon anomalous magnetic moment in the MSSM with gauge-gravity hybrid mediation, Phys. Rev. D 96 (2017) 035029 [arXiv:1610.09840] [INSPIRE].

    ADS  Article  Google Scholar 

  25. A. Choudhury, L. Darmé, L. Roszkowski, E.M. Sessolo and S. Trojanowski, Muon g 2 and related phenomenology in constrained vector-like extensions of the MSSM, JHEP 05 (2017) 072 [arXiv:1701.08778] [INSPIRE].

    ADS  Article  Google Scholar 

  26. T.T. Yanagida and N. Yokozaki, Muon g 2 in MSSM gauge mediation revisited, Phys. Lett. B 772 (2017) 409 [arXiv:1704.00711] [INSPIRE].

    ADS  Article  Google Scholar 

  27. M. Endo, K. Hamaguchi, S. Iwamoto and K. Yanagi, Probing minimal SUSY scenarios in the light of muon g 2 and dark matter, JHEP 06 (2017) 031 [arXiv:1704.05287] [INSPIRE].

    ADS  Article  Google Scholar 

  28. K. Hagiwara, K. Ma and S. Mukhopadhyay, Closing in on the chargino contribution to the muon g 2 in the MSSM: current LHC constraints, Phys. Rev. D 97 (2018) 055035 [arXiv:1706.09313] [INSPIRE].

    ADS  Article  Google Scholar 

  29. M. Chakraborti, A. Datta, N. Ganguly and S. Poddar, Multilepton signals of heavier electroweakinos at the LHC, JHEP 11 (2017) 117 [arXiv:1707.04410] [INSPIRE].

    ADS  Article  Google Scholar 

  30. A. Choudhury, S. Rao and L. Roszkowski, Impact of LHC data on muon g 2 solutions in a vectorlike extension of the constrained MSSM, Phys. Rev. D 96 (2017) 075046 [arXiv:1708.05675] [INSPIRE].

    ADS  Article  Google Scholar 

  31. M.A. Ajaib, SU(5) with nonuniversal gaugino masses, Int. J. Mod. Phys. A 33 (2018) 1850032 [arXiv:1711.02560] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. A.S. Belyaev, S.F. King and P.B. Schaefers, Muon g 2 and dark matter suggest nonuniversal gaugino masses: SU(5) × A4 case study at the LHC, Phys. Rev. D 97 (2018) 115002 [arXiv:1801.00514] [INSPIRE].

    ADS  Article  Google Scholar 

  33. G. Bhattacharyya, T.T. Yanagida and N. Yokozaki, An extended gauge mediation for muon (g 2) explanation, Phys. Lett. B 784 (2018) 118 [arXiv:1805.01607] [INSPIRE].

    ADS  Article  Google Scholar 

  34. S. Abel, D.G. Cerdeño and S. Robles, The power of genetic algorithms: what remains of the pMSSM?, arXiv:1805.03615 [INSPIRE].

  35. J. Cao, Y. He, L. Shang, Y. Zhang and P. Zhu, Current status of a natural NMSSM in light of LHC 13 TeV data and XENON-1T results, Phys. Rev. D 99 (2019) 075020 [arXiv:1810.09143] [INSPIRE].

    ADS  Article  Google Scholar 

  36. B. Dutta and Y. Mimura, Electron g 2 with flavor violation in MSSM, Phys. Lett. B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].

    ADS  Article  Google Scholar 

  37. P. Cox, C. Han, T.T. Yanagida and N. Yokozaki, Gaugino mediation scenarios for muon g 2 and dark matter, JHEP 08 (2019) 097 [arXiv:1811.12699] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. H.M. Tran and H.T. Nguyen, GUT-inspired MSSM in light of muon g 2 and LHC results at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 035040 [arXiv:1812.11757] [INSPIRE].

    ADS  Article  Google Scholar 

  39. M. Ibe, M. Suzuki, T.T. Yanagida and N. Yokozaki, Muon g 2 in split-family SUSY in light of LHC run II, Eur. Phys. J. C 79 (2019) 688 [arXiv:1903.12433] [INSPIRE].

    ADS  Article  Google Scholar 

  40. M. Badziak and K. Sakurai, Explanation of electron and muon g 2 anomalies in the MSSM, JHEP 10 (2019) 024 [arXiv:1908.03607] [INSPIRE].

    ADS  Article  Google Scholar 

  41. M. Abdughani, K.-I. Hikasa, L. Wu, J.M. Yang and J. Zhao, Testing electroweak SUSY for muon g 2 and dark matter at the LHC and beyond, JHEP 11 (2019) 095 [arXiv:1909.07792] [INSPIRE].

    ADS  Article  Google Scholar 

  42. E. Kpatcha, I. Lara, D.E. López-Fogliani, C. Muñoz and N. Nagata, Explaining muon g 2 data in the μνSSM, Eur. Phys. J. C 81 (2021) 154 [arXiv:1912.04163] [INSPIRE].

    ADS  Article  Google Scholar 

  43. T.T. Yanagida, W. Yin and N. Yokozaki, Muon g 2 in Higgs-anomaly mediation, JHEP 06 (2020) 154 [arXiv:2001.02672] [INSPIRE].

    ADS  Article  Google Scholar 

  44. C. Han, M.L. López-Ibáñez, A. Melis, O. Vives, L. Wu and J.M. Yang, LFV and (g 2) in non-universal SUSY models with light higgsinos, JHEP 05 (2020) 102 [arXiv:2003.06187] [INSPIRE].

    ADS  Article  Google Scholar 

  45. M. Chakraborti, S. Heinemeyer and I. Saha, Improved (g 2)μ measurements and supersymmetry, Eur. Phys. J. C 80 (2020) 984 [arXiv:2006.15157] [INSPIRE].

    ADS  Article  Google Scholar 

  46. R. Nagai and N. Yokozaki, Lepton flavor violations in SUSY models for muon g 2 with right-handed neutrinos, JHEP 01 (2021) 099 [arXiv:2007.00943] [INSPIRE].

    ADS  Article  Google Scholar 

  47. M. Chakraborti, S. Heinemeyer and I. Saha, Improved (g 2)μ measurements and wino/higgsino dark matter, arXiv:2103.13403 [INSPIRE].

  48. M. Endo, K. Hamaguchi, S. Iwamoto and T. Kitahara, Muon g 2 vs. LHC run 2 in supersymmetric models, JHEP 04 (2020) 165 [arXiv:2001.11025] [INSPIRE].

  49. ATLAS collaboration, Search for direct production of electroweakinos in final states with missing transverse momentum and a Higgs boson decaying into photons in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2020) 005 [arXiv:2004.10894] [INSPIRE].

  50. CMS collaboration, Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 04 (2021) 123 [arXiv:2012.08600] [INSPIRE].

  51. M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g 2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].

    ADS  Article  Google Scholar 

  52. ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Eur. Phys. J. C 80 (2020) 123 [arXiv:1908.08215] [INSPIRE].

  53. ATLAS collaboration, Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 691 [arXiv:1909.09226] [INSPIRE].

  54. CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 166 [arXiv:1709.05406] [INSPIRE].

  55. ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].

  56. S. Iwamoto, T.T. Yanagida and N. Yokozaki, Wino-higgsino dark matter in the MSSM from the g 2 anomaly, arXiv:2104.03223 [INSPIRE].

  57. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

  58. A. Djouadi, M.M. Mühlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

  59. P. Athron et al., GM2Calc: precise MSSM prediction for (g 2) of the muon, Eur. Phys. J. C 76 (2016) 62 [arXiv:1510.08071] [INSPIRE].

    ADS  Article  Google Scholar 

  60. M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g 2 vs. LHC in supersymmetric models, JHEP 01 (2014) 123 [arXiv:1303.4256] [INSPIRE].

  61. ATLAS collaboration, Search for chargino-neutralino pair production in final states with three leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Tech. Rep. ATLAS-CONF-2020-015, CERN, Geneva, Switzerland (2020).

  62. CMS collaboration, Search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-SUS-19-012, CERN, Geneva, Switzerland (2021).

  63. CMS collaboration, Search for chargino-neutralino production in final states with a Higgs boson and a W boson, Tech. Rep. CMS-PAS-SUS-20-003, CERN, Geneva, Switzerland (2021).

  64. P. von Weitershausen, M. Schafer, H. Stöckinger-Kim and D. Stöckinger, Photonic SUSY two-loop corrections to the muon magnetic moment, Phys. Rev. D 81 (2010) 093004 [arXiv:1003.5820] [INSPIRE].

    ADS  Article  Google Scholar 

  65. S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].

  66. J. Girrbach, S. Mertens, U. Nierste and S. Wiesenfeldt, Lepton flavour violation in the MSSM, JHEP 05 (2010) 026 [arXiv:0910.2663] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  67. M.M. Nojiri, K. Fujii and T. Tsukamoto, Confronting the minimal supersymmetric standard model with the study of scalar leptons at future linear e+e colliders, Phys. Rev. D 54 (1996) 6756 [hep-ph/9606370] [INSPIRE].

  68. M.M. Nojiri, D.M. Pierce and Y. Yamada, Slepton production as a probe of the squark mass scale, Phys. Rev. D 57 (1998) 1539 [hep-ph/9707244] [INSPIRE].

  69. H.-C. Cheng, J.L. Feng and N. Polonsky, Superoblique corrections and nondecoupling of supersymmetry breaking, Phys. Rev. D 56 (1997) 6875 [hep-ph/9706438] [INSPIRE].

  70. H.-C. Cheng, J.L. Feng and N. Polonsky, Signatures of multi-TeV scale particles in supersymmetric theories, Phys. Rev. D 57 (1998) 152 [hep-ph/9706476] [INSPIRE].

  71. E. Katz, L. Randall and S.-F. Su, Supersymmetric partners of oblique corrections, Nucl. Phys. B 536 (1998) 3 [hep-ph/9801416] [INSPIRE].

  72. H.G. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Non-decoupling two-loop corrections to (g 2)μ from fermion/sfermion loops in the MSSM, Phys. Lett. B 726 (2013) 717 [arXiv:1309.0980] [INSPIRE].

    ADS  Article  Google Scholar 

  73. ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].

  74. ATLAS collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 101 (2020) 052005 [arXiv:1911.12606] [INSPIRE].

  75. LEP2 SUSY Working Group, (ALEPH, DELPHI, L3 and OPAL), Combined LEP selectron/smuon/stau results, 183208 GeV, http://lepsusy.web.cern.ch/lepsusy/Welcome.html, notes LEPSUSYWG/04-01.1, (2004).

  76. ATLAS collaboration, Search for direct stau production in events with two hadronic τ-leptons in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 101 (2020) 032009 [arXiv:1911.06660] [INSPIRE].

  77. CMS collaboration, Search for direct pair production of supersymmetric partners to the τ lepton in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 189 [arXiv:1907.13179] [INSPIRE].

  78. LEP2 SUSY Working Group, (ALEPH, DELPHI, L3 and OPAL), Combined LEP chargino results, up to 208 GeV for large m0, http://lepsusy.web.cern.ch/lepsusy/Welcome.html, notes LEPSUSYWG/01-03.1, (2004).

  79. M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Article  Google Scholar 

  80. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    ADS  Article  Google Scholar 

  81. T. Kitahara, Vacuum stability constraints on the enhancement of the h → γγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].

    ADS  Article  Google Scholar 

  82. M. Carena, S. Gori, I. Low, N.R. Shah and C.E.M. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  83. Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  84. J. de Blas et al., Higgs boson studies at future particle colliders, JHEP 01 (2020) 139 [arXiv:1905.03764] [INSPIRE].

    ADS  Article  Google Scholar 

  85. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  86. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  87. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a tool for dark matter studies, Nuovo Cim. C 033N2 (2010) 111 [arXiv:1005.4133] [INSPIRE].

  88. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

  89. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

  90. LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

  91. PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].

  92. XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  93. T. Kitahara and T. Yoshinaga, Stau with large mass difference and enhancement of the Higgs to diphoton decay rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].

    ADS  Article  Google Scholar 

  94. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. 16 (1977) 1248] [INSPIRE].

  95. C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    ADS  Article  Google Scholar 

  96. M. Endo, K. Hamaguchi and K. Nakaji, Probing high reheating temperature scenarios at the LHC with long-lived staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [INSPIRE].

    ADS  Article  Google Scholar 

  97. M. Endo, T. Moroi, M.M. Nojiri and Y. Shoji, Renormalization-scale uncertainty in the decay rate of false vacuum, JHEP 01 (2016) 031 [arXiv:1511.04860] [INSPIRE].

    ADS  Article  Google Scholar 

  98. B. Batell, S. Jung and C.E.M. Wagner, Very light charginos and Higgs decays, JHEP 12 (2013) 075 [arXiv:1309.2297] [INSPIRE].

    ADS  Article  Google Scholar 

  99. M. Endo, T. Kitahara and T. Yoshinaga, Future prospects for stau in Higgs coupling to di-photon, JHEP 04 (2014) 139 [arXiv:1401.3748] [INSPIRE].

    ADS  Article  Google Scholar 

  100. XENON collaboration, Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].

  101. ATLAS collaboration, Prospects for searches for staus, charginos and neutralinos at the high luminosity LHC with the ATLAS detector, Tech. Rep. ATL-PHYS-PUB-2018-048, CERN, Geneva, Switzerland (2018).

  102. X. Cid Vidal et al., Report from working group 3: beyond the Standard Model physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 585 [arXiv:1812.07831] [INSPIRE].

    Google Scholar 

  103. S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for electroweakino discovery at a 100 TeV hadron collider, JHEP 12 (2014) 108 [arXiv:1410.6287] [INSPIRE].

    ADS  Article  Google Scholar 

  104. J. Bramante et al., Relic neutralino surface at a 100 TeV collider, Phys. Rev. D 91 (2015) 054015 [arXiv:1412.4789] [INSPIRE].

    ADS  Article  Google Scholar 

  105. S. Matsumoto, S. Shirai and M. Takeuchi, Indirect probe of electroweakly interacting particles at the high-luminosity Large Hadron Collider, JHEP 06 (2018) 049 [arXiv:1711.05449] [INSPIRE].

    ADS  Article  Google Scholar 

  106. S. Matsumoto, S. Shirai and M. Takeuchi, Indirect probe of electroweak-interacting particles with mono-lepton signatures at hadron colliders, JHEP 03 (2019) 076 [arXiv:1810.12234] [INSPIRE].

    Article  Google Scholar 

  107. S. Chigusa, Y. Ema and T. Moroi, Probing electroweakly interacting massive particles with Drell-Yan process at 100 TeV hadron colliders, Phys. Lett. B 789 (2019) 106 [arXiv:1810.07349] [INSPIRE].

    ADS  Article  Google Scholar 

  108. T. Abe, S. Chigusa, Y. Ema and T. Moroi, Indirect studies of electroweakly interacting particles at 100 TeV hadron colliders, Phys. Rev. D 100 (2019) 055018 [arXiv:1904.11162] [INSPIRE].

    ADS  Article  Google Scholar 

  109. M. Endo, K. Hamaguchi, S. Iwamoto, T. Kitahara and T. Moroi, Reconstructing supersymmetric contribution to muon anomalous magnetic dipole moment at ILC, Phys. Lett. B 728 (2014) 274 [arXiv:1310.4496] [INSPIRE].

    ADS  Article  Google Scholar 

  110. L. Beresford and J. Liu, Search strategy for sleptons and dark matter using the LHC as a photon collider, Phys. Rev. Lett. 123 (2019) 141801 [arXiv:1811.06465] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Iwamoto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.03217

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Endo, M., Hamaguchi, K., Iwamoto, S. et al. Supersymmetric interpretation of the muon g – 2 anomaly. J. High Energ. Phys. 2021, 75 (2021). https://doi.org/10.1007/JHEP07(2021)075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2021)075

Keywords

  • Supersymmetry Phenomenology