Abstract
We compute the proper real-time interaction potential between a static quark and antiquark in classical lattice gauge theory at finite temperature. Our central result is the determination of the screened real-part of this potential, and we reconfirm the presence of an imaginary part. The real part is intimately related to the back-reaction of the static sources onto the gauge fields, incorporated via Gauss’s law. Differences in the treatment of static sources in quantum and classical lattice gauge theory are discussed.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
N. Brambilla et al., Heavy Quarkonium: Progress, Puzzles, and Opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].
A. Rothkopf, Heavy Quarkonium in Extreme Conditions, Phys. Rept. 858 (2020) 1 [arXiv:1912.02253] [INSPIRE].
M. Strickland, Pseudothermalization of the quark-gluon plasma, J. Phys. Conf. Ser. 1602 (2020) 012018 [arXiv:2006.09284] [INSPIRE].
J. Berges, M.P. Heller, A. Mazeliauskas and R. Venugopalan, Thermalization in QCD: theoretical approaches, phenomenological applications, and interdisciplinary connections, arXiv:2005.12299 [INSPIRE].
C. Shen, Studying QGP with flow: A theory overview, in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Nucl. Phys. A 1005 (2021) 121788 [arXiv:2001.11858] [INSPIRE].
Y. Akamatsu, Approach to thermalization and hydrodynamics, Nucl. Phys. A 1005 (2021) 122000 [arXiv:2001.01429] [INSPIRE].
A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting and D. Teaney, Matching the non-equilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic theory, PoS Confinement2018 (2019) 152 [INSPIRE].
R. Larsen, S. Meinel, S. Mukherjee and P. Petreczky, Excited bottomonia in quark-gluon plasma from lattice QCD, Phys. Lett. B 800 (2020) 135119 [arXiv:1910.07374] [INSPIRE].
S. Offler et al., News from bottomonium spectral functions in thermal QCD, PoS LATTICE2019 (2019) 076 [arXiv:1912.12900] [INSPIRE].
R. Larsen, S. Meinel, S. Mukherjee and P. Petreczky, Thermal broadening of bottomonia: Lattice nonrelativistic QCD with extended operators, Phys. Rev. D 100 (2019) 074506 [arXiv:1908.08437] [INSPIRE].
S. Kim, P. Petreczky and A. Rothkopf, Quarkonium in-medium properties from realistic lattice NRQCD, JHEP 11 (2018) 088 [arXiv:1808.08781] [INSPIRE].
Y. Burnier et al., Thermal quarkonium physics in the pseudoscalar channel, JHEP 11 (2017) 206 [arXiv:1709.07612] [INSPIRE].
Y. Burnier, O. Kaczmarek and A. Rothkopf, Quarkonium at finite temperature: Towards realistic phenomenology from first principles, JHEP 12 (2015) 101 [arXiv:1509.07366] [INSPIRE].
Y. Burnier, O. Kaczmarek and A. Rothkopf, In-medium P-wave quarkonium from the complex lattice QCD potential, JHEP 10 (2016) 032 [arXiv:1606.06211] [INSPIRE].
T. Song, P. Gubler, J. Hong, S.H. Lee and K. Morita, J/ψ near Tc, Phys. Lett. B 813 (2021) 136065 [arXiv:2009.08741] [INSPIRE].
N.R.F. Braga, L.F. Ferreira and A. Vega, Holographic model for charmonium dissociation, Phys. Lett. B 774 (2017) 476 [arXiv:1709.05326] [INSPIRE].
H.R. Grigoryan, P.M. Hohler and M.A. Stephanov, Towards the Gravity Dual of Quarkonium in the Strongly Coupled QCD Plasma, Phys. Rev. D 82 (2010) 026005 [arXiv:1003.1138] [INSPIRE].
M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi and M. Murata, Melting Spectral Functions of the Scalar and Vector Mesons in a Holographic QCD Model, Phys. Rev. D 81 (2010) 065024 [arXiv:0911.2298] [INSPIRE].
N. Borghini and C. Gombeaud, Heavy quarkonia in a medium as a quantum dissipative system: Master equation approach, Eur. Phys. J. C 72 (2012) 2000 [arXiv:1109.4271] [INSPIRE].
Y. Akamatsu and A. Rothkopf, Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma, Phys. Rev. D 85 (2012) 105011 [arXiv:1110.1203] [INSPIRE].
Y. Akamatsu, Real-time quantum dynamics of heavy quark systems at high temperature, Phys. Rev. D 87 (2013) 045016 [arXiv:1209.5068] [INSPIRE].
N. Brambilla, M.A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend and J.H. Weber, Bottomonium suppression in an open quantum system using the quantum trajectories method, JHEP 05 (2021) 136 [arXiv:2012.01240] [INSPIRE].
W.A. De Jong, M. Metcalf, J. Mulligan, M. Płoskoń, F. Ringer and X. Yao, Quantum simulation of open quantum systems in heavy-ion collisions, arXiv:2010.03571 [INSPIRE].
X. Yao and T. Mehen, Quarkonium Semiclassical Transport in Quark-Gluon Plasma: Factorization and Quantum Correction, JHEP 21 (2020) 062 [arXiv:2009.02408] [INSPIRE].
X. Yao, W. Ke, Y. Xu, S.A. Bass and B. Müller, Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma, JHEP 21 (2020) 046 [arXiv:2004.06746] [INSPIRE].
O. Ålund, Y. Akamatsu, F. Laurén, T. Miura, J. Nordström and A. Rothkopf, Trace preserving quantum dynamics using a novel reparametrization-neutral summation-by-parts difference operator, J. Comput. Phys. 425 (2021) 109917 [arXiv:2004.04406] [INSPIRE].
T. Miura, Y. Akamatsu, M. Asakawa and A. Rothkopf, Quantum Brownian motion of a heavy quark pair in the quark-gluon plasma, Phys. Rev. D 101 (2020) 034011 [arXiv:1908.06293] [INSPIRE].
N. Brambilla, M.A. Escobedo, A. Vairo and P. Vander Griend, Transport coefficients from in medium quarkonium dynamics, Phys. Rev. D 100 (2019) 054025 [arXiv:1903.08063] [INSPIRE].
X. Yao and B. Müller, Quarkonium inside the quark-gluon plasma: Diffusion, dissociation, recombination, and energy loss, Phys. Rev. D 100 (2019) 014008 [arXiv:1811.09644] [INSPIRE].
J.-P. Blaizot and M.A. Escobedo, Approach to equilibrium of a quarkonium in a quark-gluon plasma, Phys. Rev. D 98 (2018) 074007 [arXiv:1803.07996] [INSPIRE].
N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo, Heavy quarkonium suppression in a fireball, Phys. Rev. D 97 (2018) 074009 [arXiv:1711.04515] [INSPIRE].
S. Kajimoto, Y. Akamatsu, M. Asakawa and A. Rothkopf, Dynamical dissociation of quarkonia by wave function decoherence, Phys. Rev. D 97 (2018) 014003 [arXiv:1705.03365] [INSPIRE].
X. Yao and B. Müller, Approach to equilibrium of quarkonium in quark-gluon plasma, Phys. Rev. C 97 (2018) 014908 [Erratum ibid. 97 (2018) 049903] [arXiv:1709.03529] [INSPIRE].
Y. Akamatsu, Quarkonium in Quark-Gluon Plasma: Open Quantum System Approaches Re-examined, arXiv:2009.10559 [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].
M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].
A. Beraudo, J.P. Blaizot and C. Ratti, Real and imaginary-time \( Q\overline{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].
N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].
A. Rothkopf, T. Hatsuda and S. Sasaki, Complex Heavy-Quark Potential at Finite Temperature from Lattice QCD, Phys. Rev. Lett. 108 (2012) 162001 [arXiv:1108.1579] [INSPIRE].
Y. Burnier, O. Kaczmarek and A. Rothkopf, Static quark-antiquark potential in the quark-gluon plasma from lattice QCD, Phys. Rev. Lett. 114 (2015) 082001 [arXiv:1410.2546] [INSPIRE].
Y. Burnier and A. Rothkopf, Complex heavy-quark potential and Debye mass in a gluonic medium from lattice QCD, Phys. Rev. D 95 (2017) 054511 [arXiv:1607.04049] [INSPIRE].
TUMQCD collaboration, Lattice Calculations of Heavy Quark Potential at Finite Temperature, Nucl. Phys. A 967 (2017) 592 [arXiv:1704.08573] [INSPIRE].
P. Petreczky, A. Rothkopf and J. Weber, Realistic in-medium heavy-quark potential from high statistics lattice QCD simulations, Nucl. Phys. A 982 (2019) 735 [arXiv:1810.02230] [INSPIRE].
D. Lafferty and A. Rothkopf, Improved Gauss law model and in-medium heavy quarkonium at finite density and velocity, Phys. Rev. D 101 (2020) 056010 [arXiv:1906.00035] [INSPIRE].
Y. Burnier and A. Rothkopf, Disentangling the timescales behind the non-perturbative heavy quark potential, Phys. Rev. D 86 (2012) 051503 [arXiv:1208.1899] [INSPIRE].
Y. Burnier and A. Rothkopf, A hard thermal loop benchmark for the extraction of the nonperturbative \( Q\overline{Q} \) potential, Phys. Rev. D 87 (2013) 114019 [arXiv:1304.4154] [INSPIRE].
A. Rothkopf, Bayesian techniques and applications to QCD, PoS Confinement2018 (2018) 026 [arXiv:1903.02293] [INSPIRE].
M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].
R. Micha and I.I. Tkachev, Turbulent thermalization, Phys. Rev. D 70 (2004) 043538 [hep-ph/0403101] [INSPIRE].
J. Berges, A. Rothkopf and J. Schmidt, Non-thermal fixed points: Effective weak-coupling for strongly correlated systems far from equilibrium, Phys. Rev. Lett. 101 (2008) 041603 [arXiv:0803.0131] [INSPIRE].
J. Berges and B. Wallisch, Nonthermal Fixed Points in Quantum Field Theory Beyond the Weak-Coupling Limit, Phys. Rev. D 95 (2017) 036016 [arXiv:1607.02160] [INSPIRE].
A. Chatrchyan, K.T. Geier, M.K. Oberthaler, J. Berges and P. Hauke, Analog reheating of the early universe in the laboratory, arXiv:2008.02290 [INSPIRE].
M. Laine, O. Philipsen and M. Tassler, Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations, JHEP 09 (2007) 066 [arXiv:0707.2458] [INSPIRE].
A. Lehmann, Minkowskian Lattice Simulation for Non-Relativistic Quarks in Classical Fields, Ph.D. thesis, Heidelberg University, Heidelberg (2020) DOI.
P.B. Arnold, Hot B violation, the lattice, and hard thermal loops, Phys. Rev. D 55 (1997) 7781 [hep-ph/9701393] [INSPIRE].
G.N. Watson, Three triple integrals, Quart. J. Math. os-10 (1939) 266.
M.L. Glasser and J. Boersma, Exact values for the cubic lattice green functions, J. Phys. A 33 (2000) 5017.
D. Bödeker, On the effective dynamics of soft nonAbelian gauge fields at finite temperature, Phys. Lett. B 426 (1998) 351 [hep-ph/9801430] [INSPIRE].
D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].
E. Hückel and P. Debye, The theory of electrolytes: I. lowering of freezing point and related phenomena, Phys. Z 24 (1923) 185.
T.L. Curtright and C.K. Zachos, Elementary results for the fundamental representation of SU(3), Rept. Math. Phys. 76 (2015) 401 [arXiv:1508.00868] [INSPIRE].
V. Kasper, F. Hebenstreit and J. Berges, Fermion production from real-time lattice gauge theory in the classical-statistical regime, Phys. Rev. D 90 (2014) 025016 [arXiv:1403.4849] [INSPIRE].
K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].
T.R. Klassen, The Anisotropic Wilson gauge action, Nucl. Phys. B 533 (1998) 557 [hep-lat/9803010] [INSPIRE].
J. Ambjørn, T. Askgaard, H. Porter and M.E. Shaposhnikov, Sphaleron transitions and baryon asymmetry: A Numerical real time analysis, Nucl. Phys. B 353 (1991) 346 [INSPIRE].
J. Ambjørn and A. Krasnitz, Improved determination of the classical sphaleron transition rate, Nucl. Phys. B 506 (1997) 387 [hep-ph/9705380] [INSPIRE].
D.Y. Grigoriev and V.A. Rubakov, Soliton Pair Creation at Finite Temperatures. Numerical Study in (1+1)-dimensions, Nucl. Phys. B 299 (1988) 67 [INSPIRE].
G.D. Moore, Motion of Chern-Simons number at high temperatures under a chemical potential, Nucl. Phys. B 480 (1996) 657 [hep-ph/9603384] [INSPIRE].
Y. Akamatsu, A. Rothkopf and N. Yamamoto, Non-Abelian chiral instabilities at high temperature on the lattice, JHEP 03 (2016) 210 [arXiv:1512.02374] [INSPIRE].
R.B. Blackman and J.W. Tukey, The measurement of power spectra from the point of view of communications engineering — part i, Bell Syst. Tech. J. 37 (1958) 185.
A. Rothkopf, Classical statistical simulation of SU(3) yang-mills theory in the presence of static sources, (2020) DOI.
G.D. Moore and M. Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 02 (2011) 105 [arXiv:1011.1167] [INSPIRE].
R. Yanagihara, T. Iritani, M. Kitazawa, M. Asakawa and T. Hatsuda, Distribution of Stress Tensor around Static Quark-Anti-Quark from Yang-Mills Gradient Flow, Phys. Lett. B 789 (2019) 210 [arXiv:1803.05656] [INSPIRE].
A. Lehmann and A. Rothkopf, Real-Time-Evolution of Heavy-Quarkonium Bound States, PoS LATTICE2019 (2019) 074 [arXiv:2003.02509] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2012.10089
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Lehmann, A., Rothkopf, A. Proper static potential in classical lattice gauge theory at finite T. J. High Energ. Phys. 2021, 67 (2021). https://doi.org/10.1007/JHEP07(2021)067
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2021)067