Skip to main content

Spectral fluctuations in the Sachdev-Ye-Kitaev model

A preprint version of the article is available at arXiv.

Abstract

We present a detailed quantitative analysis of spectral correlations in the Sachdev-Ye-Kitaev (SYK) model. We find that the deviations from universal Random Matrix Theory (RMT) behavior are due to a small number of long-wavelength fluctuations (of the order of the number of Majorana fermions N) from one realization of the ensemble to the next one. These modes can be parameterized effectively in terms of Q-Hermite orthogonal polynomials, the main contribution being due to scale fluctuations for which we give a simple analytical estimate. Our numerical results for N = 32 show that only the lowest eight polynomials are needed to eliminate the nonuniversal part of the spectral fluctuations. The covariance matrix of the coefficients of this expansion can be obtained analytically from low-order double-trace moments. We evaluate the covariance matrix of the first six moments and find that it agrees with the numerics. We also analyze the spectral correlations in terms of a nonlinear σ-model, which is derived through a Fierz transformation, and evaluate the one and two-point spectral correlation functions to two-loop order. The wide correlator is given by the sum of the universal RMT result and corrections whose lowest-order term corresponds to scale fluctuations. However, the loop expansion of the σ-model results in an ill-behaved expansion of the resolvent, and it gives universal RMT fluctuations not only for q = 4 or higher even q-body interactions, but also for the q = 2 SYK model albeit with a much smaller Thouless energy while the correct result in this case should have been Poisson statistics. In our numerical studies we analyze the number variance and spectral form factor for N = 32 and q = 4. We show that the quadratic deviation of the number variance for large energies appears as a peak for small times in the spectral form factor. After eliminating the long-wavelength fluctuations, we find quantitative agreement with RMT up to an exponentially large number of level spacings for the number variance or exponentially short times in the case of the spectral form factor.

References

  1. A. Kitaev, A simple model of quantum holography, KITP strings seminar and Entanglement 2015 program, 12 February, 7 April and 27 May 2015 [http://online.kitp.ucsb.edu/online/entangled15/].

  2. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  3. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. L.V. Iliesiu, S.S. Pufu, H. Verlinde and Y. Wang, An exact quantization of Jackiw-Teitelboim gravity, JHEP 11 (2019) 091 [arXiv:1905.02726] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].

    ADS  Google Scholar 

  6. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. J. Cotler and N. Hunter-Jones, Spectral decoupling in many-body quantum chaos, arXiv:1911.02026 [INSPIRE].

  8. F. Borgonovi, F.M. Izrailev and L.F. Santos, Timescales in the quench dynamics of many-body quantum systems: Participation ratio versus out-of-time ordered correlator, Phys. Rev. E 99 (2019) 052143 [arXiv:1903.09175] [INSPIRE].

    ADS  Google Scholar 

  9. O. Bohigas, M.J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev Model and Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological States, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].

    ADS  Google Scholar 

  11. A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].

    ADS  Google Scholar 

  12. J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].

  13. P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].

  14. J.J.M Verbaarschot and M.R Zirnbauer, Replica variables, loop expansion and spectral rigidity of random-matrix ensembles, Annals Phys. 158 (1984) 78.

  15. A. Altland and D. Bagrets, Quantum ergodicity in the SYK model, Nucl. Phys. B 930 (2018) 45 [arXiv:1712.05073] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. A.M. García-García, Y. Jia and J.J.M. Verbaarschot, Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev Model, Phys. Rev. D 97 (2018) 106003 [arXiv:1801.01071] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka, Onset of Random Matrix Behavior in Scrambling Systems, JHEP 07 (2018) 124 [Erratum ibid. 02 (2019) 197] [arXiv:1803.08050] [INSPIRE].

  18. J.B. French and S.S.M. Wong, Some random-matrix level and spacing distributions for fixed-particle-rank interactions, Phys. Lett. B 35 (1971) 5 [INSPIRE].

    ADS  Google Scholar 

  19. O. Bohigas and J. Flores, Two-body random hamiltonian and level density, Phys. Lett. B 34 (1971) 261 [INSPIRE].

    ADS  Google Scholar 

  20. K. Mon and J.B. French, Statistical Properties of Many Particle Spectra, Annals Phys. 95 (1975) 90 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].

    Google Scholar 

  22. D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

    ADS  MATH  Google Scholar 

  23. A.M. García-García and J.J.M. Verbaarschot, Analytical Spectral Density of the Sachdev-Ye-Kitaev Model at finite N, Phys. Rev. D 96 (2017) 066012 [arXiv:1701.06593] [INSPIRE].

    ADS  Google Scholar 

  24. D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. H.A. Bethe, An Attempt to Calculate the Number of Energy Levels of a Heavy Nucleus, Phys. Rev. 50 (1936) 332 [INSPIRE].

    ADS  MATH  Google Scholar 

  26. E. Witten, An SYK-Like Model Without Disorder, J. Phys. A 52 (2019) 474002 [arXiv:1610.09758] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. J. Kim, I.R. Klebanov, G. Tarnopolsky and W. Zhao, Symmetry Breaking in Coupled SYK or Tensor Models, Phys. Rev. X 9 (2019) 021043 [arXiv:1902.02287] [INSPIRE].

    Google Scholar 

  29. I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv:1707.02325 [INSPIRE].

  30. A. Almheiri, A. Milekhin and B. Swingle, Universal Constraints on Energy Flow and SYK Thermalization, arXiv:1912.04912 [INSPIRE].

  31. J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP 11 (2017) 149 [arXiv:1707.08013] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. A. del Campo, J. Molina-Vilaplana, L.F. Santos and J. Sonner, Decay of a Thermofield-Double State in Chaotic Quantum Systems, Eur. Phys. J. ST 227 (2018) 247 [arXiv:1709.10105] [INSPIRE].

    Google Scholar 

  33. T. Nosaka, D. Rosa and J. Yoon, The Thouless time for mass-deformed SYK, JHEP 09 (2018) 041 [arXiv:1804.09934] [INSPIRE].

    ADS  MATH  Google Scholar 

  34. A.M. García-García, B. Loureiro, A. Romero-Bermúdez and M. Tezuka, Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 120 (2018) 241603 [arXiv:1707.02197] [INSPIRE].

    ADS  Google Scholar 

  35. J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  36. A.M. García-García, T. Nosaka, D. Rosa and J.J.M. Verbaarschot, Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole, Phys. Rev. D 100 (2019) 026002 [arXiv:1901.06031] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. K. Okuyama, Replica symmetry breaking in random matrix model: a toy model of wormhole networks, Phys. Lett. B 803 (2020) 135280 [arXiv:1903.11776] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  38. G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].

  39. J. Maldacena and A. Milekhin, SYK wormhole formation in real time, arXiv:1912.03276 [INSPIRE].

  40. J. De Boer, R. Van Breukelen, S.F. Lokhande, K. Papadodimas and E. Verlinde, Probing typical black hole microstates, JHEP 01 (2020) 062 [arXiv:1901.08527] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  41. A. Kruchkov, A. Patel, P. Kim and S. Sachdev, Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experiments, Phys. Rev. B 101 (2020) 205148 [arXiv:1912.02835] [INSPIRE].

    ADS  Google Scholar 

  42. A. Altland, D. Bagrets and A. Kamenev, Sachdev-Ye-Kitaev Non-Fermi-Liquid Correlations in Nanoscopic Quantum Transport, Phys. Rev. Lett. 123 (2019) 226801 [arXiv:1908.11351] [INSPIRE].

    ADS  Google Scholar 

  43. J.F. Karcher, M. Sonner and A.D. Mirlin, Disorder and interaction in chiral chains: Majoranas versus complex fermions, Phys. Rev. B 100 (2019) 134207 [arXiv:1905.12743] [INSPIRE].

    ADS  Google Scholar 

  44. Y. Gu, A. Kitaev, S. Sachdev and G. Tarnopolsky, Notes on the complex Sachdev-Ye-Kitaev model, JHEP 02 (2020) 157 [arXiv:1910.14099] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. D. Rossini, G.M. Andolina, D. Rosa, M. Carrega and M. Polini, Quantum charging supremacy via Sachdev-Ye-Kitaev batteries, arXiv:1912.07234 [INSPIRE].

  46. P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

  47. D. Stanford and E. Witten, JT Gravity and the Ensembles of Random Matrix Theory, arXiv:1907.03363 [INSPIRE].

  48. P. Saad, Late Time Correlation Functions, Baby Universes and ETH in JT Gravity, arXiv:1910.10311 [INSPIRE].

  49. A.M. García-García and S. Zacarías, Quantum Jackiw-Teitelboim gravity, Selberg trace formula and random matrix theory, arXiv:1911.10493 [INSPIRE].

  50. D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, Hamiltonian deformations in quantum mechanics, \( T\overline{T} \) and SYK, arXiv:1912.06132 [INSPIRE].

  51. V. Oganesyan and D.A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75 (2007) 155111.

    ADS  Google Scholar 

  52. J.B. French, Analysis of distant-neighbor spacing distributions for k-body interaction ensembles, Rev. Mex. Fis. 22 (1973) 221.

    Google Scholar 

  53. J. Flores, M. Horoi, M. Müller and T.H. Seligman, Spectral statistics of the two-body random ensemble revisited, Phys. Rev. E 63 (2001) 026204 [cond-mat/0006144] [INSPIRE].

  54. I.R. Klebanov, P.N. Pallegar and F.K. Popov, Majorana Fermion Quantum Mechanics for Higher Rank Tensors, Phys. Rev. D 100 (2019) 086003 [arXiv:1905.06264] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. L. Benet and H.A. Weidenmüller, Review of the k body embedded ensembles of Gaussian random matrices, J. Phys. A 36 (2003) 3569 [cond-mat/0207656] [INSPIRE].

  56. M. Srednicki, Spectral statistics of the k-body random-interaction model, Phys. Rev. E 66 (2002) 046138.

    ADS  Google Scholar 

  57. J.J.M. Verbaarschot and M.R. Zirnbauer, Critique of the Replica Trick, J. Phys. A 18 (1985) 1093 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. H. Wang, D. Bagrets, A.L. Chudnovskiy and A. Kamenev, On the replica structure of Sachdev-Ye-Kitaev model, JHEP 09 (2019) 057 [arXiv:1812.02666] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  59. I. Aref’eva, M. Khramtsov, M. Tikhanovskaya and I. Volovich, On replica-nondiagonal large N saddles in the SYK model, EPJ Web Conf. 191 (2018) 06007 [INSPIRE].

    MATH  Google Scholar 

  60. I. Aref’eva, M. Khramtsov, M. Tikhanovskaya and I. Volovich, Replica-nondiagonal solutions in the SYK model, JHEP 07 (2019) 113 [arXiv:1811.04831] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  61. M.E.H. Ismail, C. Stanton and G. Viennot, The Combinatorics of q-Hermite polynomials and the Askey-Wilson Integral, Eur. J. Combinatorics 8 (1987) 379.

    MathSciNet  MATH  Google Scholar 

  62. A.M. García-García, Y. Jia and J.J.M. Verbaarschot, Exact moments of the Sachdev-Ye-Kitaev model up to order 1/N 2 , JHEP 04 (2018) 146 [arXiv:1801.02696] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. M. Berkooz, P. Narayan and J. Simon, Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction, JHEP 08 (2018) 192 [arXiv:1806.04380] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  64. M. Berkooz, M. Isachenkov, V. Narovlansky and G. Torrents, Towards a full solution of the large N double-scaled SYK model, JHEP 03 (2019) 079 [arXiv:1811.02584] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  65. A. Cappelli and F. Colomo, Solving the frustrated spherical model with q polynomials, J. Phys. A 31 (1998) 3141 [hep-th/9710071] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  66. Y. Jia and J.J.M. Verbaarschot, Large N expansion of the moments and free energy of Sachdev-Ye-Kitaev model and the enumeration of intersection graphs, JHEP 11 (2018) 031 [arXiv:1806.03271] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  67. A. Pandey, Statistical properties of many-particle spectra: III. ergodic behavior in random-matrix ensembles, Annals Phys. 118 (1979) 511.

  68. A. Delon, R. Jost and M. Lombardi, NO2 jet cooled visible excitation spectrum-vibronic chaos induced by the \( {\tilde{X}}^2{A}_1-{\tilde{A}}^2{B}_2 \) interaction, J. Chem. Phys. 95 (1991) 5701.

    ADS  Google Scholar 

  69. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey and S.S.M. Wong, Random matrix physics: Spectrum and strength fluctuations, Rev. Mod. Phys. 53 (1981) 385 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  70. A.M. Halasz and J.J.M. Verbaarschot, Universal fluctuations in spectra of the lattice Dirac operator, Phys. Rev. Lett. 74 (1995) 3920 [hep-lat/9501025] [INSPIRE].

  71. J.C. Osborn, D. Toublan and J.J.M. Verbaarschot, From chiral random matrix theory to chiral perturbation theory, Nucl. Phys. B 540 (1999) 317 [hep-th/9806110] [INSPIRE].

    ADS  Google Scholar 

  72. M.E. Berbenni-Bitsch et al., Random matrix theory, chiral perturbation theory and lattice data, Phys. Lett. B 466 (1999) 293 [hep-lat/9907014] [INSPIRE].

  73. Y. Liu, M.A. Nowak and I. Zahed, Disorder in the Sachdev-Yee-Kitaev Model, Phys. Lett. B 773 (2017) 647 [arXiv:1612.05233] [INSPIRE].

    ADS  Google Scholar 

  74. M. Lal Mehta, Random Matrices, 3rd ed., Pure and Applied Mathematics, volume 142, Elsevier, Amsterdam (2004).

  75. N.S. Witte and P.J. Forrester, Moments of the Gaussian β Ensembles and the large-N expansion of the densities, J. Math. Phys. 55 (2014) 083302 [arXiv:1310.8498] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyang Jia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1912.11923

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Verbaarschot, J.J.M. Spectral fluctuations in the Sachdev-Ye-Kitaev model. J. High Energ. Phys. 2020, 193 (2020). https://doi.org/10.1007/JHEP07(2020)193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2020)193

Keywords

  • Matrix Models
  • Random Systems
  • Field Theories in Lower Dimensions