R. Kedem and B.M. McCoy, Construction of modular branching functions from Bethe’s equations in the three state Potts chain, J. Statist. Phys. 71 (1993) 865 [hep-th/9210129] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Kedem, T.R. Klassen, B.M. McCoy and E. Melzer, Fermionic quasiparticle representations for characters of G(1)1 × G(1)1/G(1)2 , Phys. Lett. B 304 (1993) 263 [hep-th/9211102] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
W. Nahm, Conformal field theory and torsion elements of the Bloch group, in Les Houches School of Physics: frontiers in number theory, physics and geometry, Springer, Berlin, Heidelberg, Germany (2007), pg. 67 [hep-th/0404120] [INSPIRE].
D. Zagier, The dilogarithm function, in Frontiers in number theory, physics and geometry II, Springer, Berlin, Heidelberg, Germany (2007), pg. 3.
S. Garoufalidis and T.T. Lê, Nahm sums, stability and the colored Jones polynomial, Res. Math. Sci. 2 (2015) 1.
MathSciNet
Article
Google Scholar
S. Garoufalidis and D. Zagier, Asymptotics of Nahm sums at roots of unity, arXiv:1812.07690 [INSPIRE].
M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys. 5 (2011) 231 [arXiv:1006.2706] [INSPIRE].
MathSciNet
Article
Google Scholar
M. Reineke, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math. 147 (2011) 943.
MathSciNet
Article
Google Scholar
M. Reineke, Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers, Doc. Math. 17 (2012) 1 [arXiv:1102.3978].
ADS
MathSciNet
MATH
Google Scholar
S. Meinhardt and M. Reineke, Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, arXiv:1411.4062.
H. Franzen and M. Reineke, Semi-stable Chow-Hall algebras of quivers and quantized Donaldson-Thomas invariants, arXiv:1512.03748.
P. Kucharski, M. Reineke, M. Stosic and P. Sułkowski, BPS states, knots and quivers, Phys. Rev. D 96 (2017) 121902 [arXiv:1707.02991] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Kucharski, M. Reineke, M. Stosic and P. Sułkowski, Knots-quivers correspondence, Adv. Theor. Math. Phys. 23 (2019) 1849 [arXiv:1707.04017] [INSPIRE].
MathSciNet
Article
Google Scholar
P. Kucharski and P. Su-lkowski, BPS counting for knots and combinatorics on words, JHEP 11 (2016) 120 [arXiv:1608.06600] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
W. Luo and S. Zhu, Integrality structures in topological strings I: framed unknot, arXiv:1611.06506 [INSPIRE].
M. Stosic and P. Wedrich, Rational links and DT invariants of quivers, arXiv:1711.03333 [INSPIRE].
M.o. Panfil, M. Stošić and P. Sułkowski, Donaldson-Thomas invariants, torus knots and lattice paths, Phys. Rev. D 98 (2018) 026022 [arXiv:1802.04573] [INSPIRE].
T. Ekholm, P. Kucharski and P. Longhi, Physics and geometry of knots-quivers correspondence, arXiv:1811.03110 [INSPIRE].
M.o. Panfil and P. Sułkowski, Topological strings, strips and quivers, JHEP 01 (2019) 124 [arXiv:1811.03556] [INSPIRE].
T. Ekholm, P. Kucharski and P. Longhi, Multi-cover skeins, quivers and 3d N = 2 dualities, JHEP 02 (2020) 018 [arXiv:1910.06193] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Stosic and P. Wedrich, Tangle addition and the knots-quivers correspondence, arXiv:2004.10837 [INSPIRE].
H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys. 217 (2001) 423 [hep-th/0004196] [INSPIRE].
J.M.F. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large N, JHEP 11 (2000) 007 [hep-th/0010102] [INSPIRE].
J.M.F. Labastida and M. Mariño, A new point of view in the theory of knot and link invariants, math.QA/0104180 [INSPIRE].
P. Ramadevi and T. Sarkar, On link invariants and topological string amplitudes, Nucl. Phys. B 600 (2001) 487 [hep-th/0009188] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V.K. Singh and A. Sleptsov, Checks of integrality properties in topological strings, JHEP 08 (2017) 139 [Addendum ibid. 01 (2018) 143] [arXiv:1702.06316] [INSPIRE].
S. Garoufalidis, P. Kucharski and P. Sułkowski, Knots, BPS states and algebraic curves, Commun. Math. Phys. 346 (2016) 75 [arXiv:1504.06327] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Garoufalidis and T.T.Q. Lê, A survey of q-holonomic functions, arXiv:1601.07487 [INSPIRE].
B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].
B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions, JHEP 11 (2004) 031 [hep-th/0407261] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Chekhov and B. Eynard, Hermitean matrix model free energy: Feynman graph technique for all genera, JHEP 03 (2006) 014 [hep-th/0504116] [INSPIRE].
ADS
Article
Google Scholar
L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all genera, JHEP 12 (2006) 026 [math-ph/0604014] [INSPIRE].
V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys. 287 (2009) 117 [arXiv:0709.1453] [INSPIRE].
O. Dumitrescu, M. Mulase, B. Safnuk and A. Sorkin, The spectral curve of the Eynard-Orantin recursion via the Laplace transform, Contemp. Math. 593 (2013) 263 [arXiv:1202.1159] [INSPIRE].
MathSciNet
Article
Google Scholar
R. Dijkgraaf, H. Fuji and M. Manabe, The volume conjecture, perturbative knot invariants and recursion relations for topological strings, Nucl. Phys. B 849 (2011) 166 [arXiv:1010.4542] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, arXiv:1205.2261 [INSPIRE].
S. Gukov and P. Sulkowski, A-polynomial, B-model and quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
V. Bouchard and B. Eynard, Reconstructing WKB from topological recursion, arXiv:1606.04498 [INSPIRE].
L.O. Chekhov, B. Eynard and O. Marchal, Topological expansion of β-ensemble model and quantum algebraic geometry in the sectorwise approach, Theor. Math. Phys. 166 (2011) 141 [arXiv:1009.6007] [INSPIRE].
MathSciNet
Article
Google Scholar
V. Bouchard and B. Eynard, Think globally, compute locally, JHEP 02 (2013) 143 [arXiv:1211.2302] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Kontsevich and Y. Soibelman, Airy structures and symplectic geometry of topological recursion, arXiv:1701.09137 [INSPIRE].
J.E. Andersen, G. Borot, L.O. Chekhov and N. Orantin, The ABCD of topological recursion, arXiv:1703.03307 [INSPIRE].
V. Bouchard, P. Ciosmak, L. Hadasz, K. Osuga, B. Ruba and P. Sułkowski, Super quantum Airy structures, arXiv:1907.08913 [INSPIRE].
V. Bouchard and P. Sulkowski, Topological recursion and mirror curves, Adv. Theor. Math. Phys. 16 (2012) 1443 [arXiv:1105.2052] [INSPIRE].
MathSciNet
Article
Google Scholar
I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Wiley, U.S.A. (1994).
Book
Google Scholar
RISC Combinatorics group, A. Riese, qZeil.m webpage, http://www.risc.jku.at/research/combinat/software/qZeil/.
B. Eynard and N. Orantin, Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture, Commun. Math. Phys. 337 (2015) 483 [arXiv:1205.1103] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar