Skip to main content

Neural network-based top tagger with two-point energy correlations and geometry of soft emissions

A preprint version of the article is available at arXiv.

Abstract

Deep neural networks trained on jet images have been successful in classifying different kinds of jets. In this paper, we identify the crucial physics features that could reproduce the classification performance of the convolutional neural network in the top jet vs. QCD jet classification. We design a neural network that considers two types of sub-structural features: two-point energy correlations, and the IRC unsafe counting variables of a morphological analysis of jet images. The new set of IRC unsafe variables can be described by Minkowski functionals from integral geometry. To integrate these features into a single framework, we reintroduce two-point energy correlations in terms of a graph neural network and provide the other features to the network afterward. The network shows a comparable classification performance to the convolutional neural network. Since both networks are using IRC unsafe features at some level, the results based on simulations are often dependent on the event generator choice. We compare the classification results of Pythia 8 and Herwig 7, and a simple reweighting on the distribution of IRC unsafe features reduces the difference between the results from the two simulations.

References

  1. A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].

    ADS  Google Scholar 

  2. R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].

    ADS  Google Scholar 

  3. D. Guest, K. Cranmer and D. Whiteson, Deep Learning and its Application to LHC Physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].

    ADS  Google Scholar 

  4. A. Radovic et al., Machine learning at the energy and intensity frontiers of particle physics, Nature 560 (2018) 41 [INSPIRE].

    ADS  Google Scholar 

  5. M. Abdughani, J. Ren, L. Wu, J.M. Yang and J. Zhao, Supervised deep learning in high energy phenomenology: a mini review, Commun. Theor. Phys. 71 (2019) 955 [arXiv:1905.06047] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].

    ADS  Google Scholar 

  7. L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images - deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

    Google Scholar 

  8. P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].

    ADS  MATH  Google Scholar 

  9. A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned Top Tagging with a Lorentz Layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].

    ADS  Google Scholar 

  10. L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly Supervised Classification in High Energy Physics, JHEP 05 (2017) 145 [arXiv:1702.00414] [INSPIRE].

    ADS  MATH  Google Scholar 

  11. G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].

    ADS  Google Scholar 

  12. G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet Physics, JHEP 01 (2019) 057 [arXiv:1702.00748] [INSPIRE].

    ADS  Google Scholar 

  13. T. Cheng, Recursive Neural Networks in Quark/Gluon Tagging, Comput. Softw. Big Sci. 2 (2018) 3 [arXiv:1711.02633] [INSPIRE].

    Google Scholar 

  14. S. Egan, W. Fedorko, A. Lister, J. Pearkes and C. Gay, Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059 [INSPIRE].

  15. E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].

    ADS  Google Scholar 

  16. P.T. Komiske, E.M. Metodiev and J. Thaler, Energy Flow Networks: Deep Sets for Particle Jets, JHEP 01 (2019) 121 [arXiv:1810.05165] [INSPIRE].

    ADS  Google Scholar 

  17. S. Macaluso and D. Shih, Pulling Out All the Tops with Computer Vision and Deep Learning, JHEP 10 (2018) 121 [arXiv:1803.00107] [INSPIRE].

    ADS  Google Scholar 

  18. A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics, Eur. Phys. J. C 79 (2019) 102 [arXiv:1804.09720] [INSPIRE].

    ADS  Google Scholar 

  19. S.H. Lim and M.M. Nojiri, Spectral Analysis of Jet Substructure with Neural Networks: Boosted Higgs Case, JHEP 10 (2018) 181 [arXiv:1807.03312] [INSPIRE].

    ADS  Google Scholar 

  20. H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D 101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].

    ADS  Google Scholar 

  21. A. Chakraborty, S.H. Lim and M.M. Nojiri, Interpretable deep learning for two-prong jet classification with jet spectra, JHEP 19 (2020) 135 [arXiv:1904.02092] [INSPIRE].

    Google Scholar 

  22. A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, Binary JUNIPR: an interpretable probabilistic model for discrimination, Phys. Rev. Lett. 123 (2019) 182001 [arXiv:1906.10137] [INSPIRE].

    ADS  Google Scholar 

  23. Y.-C.J. Chen, C.-W. Chiang, G. Cottin and D. Shih, Boosted W and Z tagging with jet charge and deep learning, Phys. Rev. D 101 (2020) 053001 [arXiv:1908.08256] [INSPIRE].

    ADS  Google Scholar 

  24. T. Cheng, Interpretability Study on Deep Learning for Jet Physics at the Large Hadron Collider, in 33rd Annual Conference on Neural Information Processing Systems, 11, 2019 [arXiv:1911.01872] [INSPIRE].

  25. K.-F. Chen and Y.-T. Chien, Deep learning jet substructure from two-particle correlations, Phys. Rev. D 101 (2020) 114025 [arXiv:1911.02020] [INSPIRE].

    ADS  Google Scholar 

  26. G. Kasieczka and D. Shih, DisCo Fever: Robust Networks Through Distance Correlation, arXiv:2001.05310 [INSPIRE].

  27. T. Heimel, G. Kasieczka, T. Plehn and J.M. Thompson, QCD or What?, SciPost Phys. 6 (2019) 030 [arXiv:1808.08979] [INSPIRE].

    ADS  Google Scholar 

  28. M. Farina, Y. Nakai and D. Shih, Searching for New Physics with Deep Autoencoders, Phys. Rev. D 101 (2020) 075021 [arXiv:1808.08992] [INSPIRE].

    ADS  Google Scholar 

  29. J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty Detection Meets Collider Physics, Phys. Rev. D 101 (2020) 076015 [arXiv:1807.10261] [INSPIRE].

    ADS  Google Scholar 

  30. B.M. Dillon, D.A. Faroughy and J.F. Kamenik, Uncovering latent jet substructure, Phys. Rev. D 100 (2019) 056002 [arXiv:1904.04200] [INSPIRE].

    ADS  Google Scholar 

  31. S. Diefenbacher, H. Frost, G. Kasieczka, T. Plehn and J.M. Thompson, CapsNets Continuing the Convolutional Quest, SciPost Phys. 8 (2020) 023 [arXiv:1906.11265] [INSPIRE].

    ADS  Google Scholar 

  32. A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].

    ADS  Google Scholar 

  33. T.S. Roy and A.H. Vijay, A robust anomaly finder based on autoencoder, arXiv:1903.02032 [INSPIRE].

  34. J.H. Collins, K. Howe and B. Nachman, Extending the search for new resonances with machine learning, Phys. Rev. D 99 (2019) 014038 [arXiv:1902.02634] [INSPIRE].

    ADS  Google Scholar 

  35. O. Amram and C.M. Suarez, Tag N’ Train: A Technique to Train Improved Classifiers on Unlabeled Data, arXiv:2002.12376 [INSPIRE].

  36. B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev. D 101 (2020) 075042 [arXiv:2001.04990] [INSPIRE].

    ADS  Google Scholar 

  37. A. Andreassen, B. Nachman and D. Shih, Simulation Assisted Likelihood-free Anomaly Detection, Phys. Rev. D 101 (2020) 095004 [arXiv:2001.05001] [INSPIRE].

    ADS  Google Scholar 

  38. D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].

    ADS  Google Scholar 

  39. ATLAS collaboration, Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment, Tech. Rep. ATL-PHYS-PUB-2017-003 (2017).

  40. CMS collaboration, Heavy flavor identification at CMS with deep neural networks, Tech. Rep. CMS-DP-2017-005 (2017).

  41. J. Arjona Martínez, O. Cerri, M. Pierini, M. Spiropulu and J.-R. Vlimant, Pileup mitigation at the Large Hadron Collider with graph neural networks, Eur. Phys. J. Plus 134 (2019) 333 [arXiv:1810.07988] [INSPIRE].

    Google Scholar 

  42. P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].

    ADS  Google Scholar 

  43. P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Learning to Remove Pileup at the LHC with Jet Images, J. Phys. Conf. Ser. 1085 (2018) 042010 [INSPIRE].

    Google Scholar 

  44. J. Bendavid, Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks, arXiv:1707.00028 [INSPIRE].

  45. M.D. Klimek and M. Perelstein, Neural Network-Based Approach to Phase Space Integration, arXiv:1810.11509 [INSPIRE].

  46. S. Otten et al., Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer, arXiv:1901.00875 [INSPIRE].

  47. B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC analysis-specific datasets with Generative Adversarial Networks, arXiv:1901.05282 [INSPIRE].

  48. R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC, JHEP 08 (2019) 110 [arXiv:1903.02433] [INSPIRE].

    ADS  Google Scholar 

  49. A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7 (2019) 075 [arXiv:1907.03764] [INSPIRE].

    ADS  Google Scholar 

  50. S. Carrazza and F.A. Dreyer, Lund jet images from generative and cycle-consistent adversarial networks, Eur. Phys. J. C 79 (2019) 979 [arXiv:1909.01359] [INSPIRE].

    ADS  Google Scholar 

  51. SHiP collaboration, Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks, 2019 JINST 14 P11028 [arXiv:1909.04451] [INSPIRE].

  52. A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Subtraction, arXiv:1912.08824 [INSPIRE].

  53. F. Bishara and M. Montull, (Machine) Learning Amplitudes for Faster Event Generation, arXiv:1912.11055 [INSPIRE].

  54. E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Exploring phase space with Neural Importance Sampling, SciPost Phys. 8 (2020) 069 [arXiv:2001.05478] [INSPIRE].

    ADS  Google Scholar 

  55. C. Gao, J. Isaacson and C. Krause, i-flow: High-Dimensional Integration and Sampling with Normalizing Flows, arXiv:2001.05486 [INSPIRE].

  56. C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event Generation with Normalizing Flows, Phys. Rev. D 101 (2020) 076002 [arXiv:2001.10028] [INSPIRE].

    ADS  Google Scholar 

  57. K.T. Matchev and P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics, arXiv:2002.06307 [INSPIRE].

  58. S. Badger and J. Bullock, Using neural networks for efficient evaluation of high multiplicity scattering amplitudes, JHEP 06 (2020) 114 [arXiv:2002.07516] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. A. Andreassen, P.T. Komiske, E.M. Metodiev, B. Nachman and J. Thaler, OmniFold: A Method to Simultaneously Unfold All Observables, Phys. Rev. Lett. 124 (2020) 182001 [arXiv:1911.09107] [INSPIRE].

    ADS  Google Scholar 

  60. M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder, How to GAN away Detector Effects, SciPost Phys. 8 (2020) 070 [arXiv:1912.00477] [INSPIRE].

    ADS  Google Scholar 

  61. S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [INSPIRE].

  62. S. Forte, J.I. Latorre, L. Magnea and A. Piccione, Determination of αs from scaling violations of truncated moments of structure functions, Nucl. Phys. B 643 (2002) 477 [hep-ph/0205286] [INSPIRE].

  63. J. Rojo and J.I. Latorre, Neural network parametrization of spectral functions from hadronic tau decays and determination of QCD vacuum condensates, JHEP 01 (2004) 055 [hep-ph/0401047] [INSPIRE].

  64. NNPDF collaboration, Unbiased determination of the proton structure function \( {F}_2^p \) with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [INSPIRE].

  65. NNPDF collaboration, Neural network determination of parton distributions: The Nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [INSPIRE].

  66. NNPDF collaboration, A Determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].

  67. NNPDF collaboration, Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].

  68. R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].

    ADS  MATH  Google Scholar 

  69. NNPDF collaboration, Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys. B 849 (2011) 112 [Erratum ibid. 854 (2012) 926] [Erratum ibid. 855 (2012) 927] [arXiv:1012.0836] [INSPIRE].

  70. R.D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].

    ADS  Google Scholar 

  71. S. Lionetti et al., Precision determination of αs using an unbiased global NLO parton set, Phys. Lett. B 701 (2011) 346 [arXiv:1103.2369] [INSPIRE].

    ADS  Google Scholar 

  72. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Google Scholar 

  73. NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

  74. NNPDF collaboration, Towards the determination of the photon parton distribution function constrained by LHC data, PoS DIS2013 (2013) 279 [arXiv:1307.1131] [INSPIRE].

  75. NNPDF collaboration, Towards an unbiased determination of parton distributions with QED corrections, in 48th Rencontres de Moriond on QCD and High Energy Interactions, pp. 357–360 (2013) [arXiv:1305.4179] [INSPIRE].

  76. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  77. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  78. NNPDF collaboration, A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties, Eur. Phys. J. C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].

  79. A. Butter et al., The Machine Learning Landscape of Top Taggers, SciPost Phys. 7 (2019) 014 [arXiv:1902.09914] [INSPIRE].

    ADS  Google Scholar 

  80. ATLAS collaboration, Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC, Eur. Phys. J. C 79 (2019) 375 [arXiv:1808.07858] [INSPIRE].

  81. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    ADS  Google Scholar 

  82. J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].

    ADS  Google Scholar 

  83. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].

    ADS  Google Scholar 

  84. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].

    ADS  Google Scholar 

  85. CMS collaboration, A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging, Tech. Rep. CMS-PAS-JME-09-001 (2009).

  86. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    ADS  Google Scholar 

  87. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].

    ADS  Google Scholar 

  88. M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].

    ADS  Google Scholar 

  89. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    ADS  Google Scholar 

  90. D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].

    ADS  Google Scholar 

  91. D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].

    ADS  Google Scholar 

  92. D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].

    ADS  Google Scholar 

  93. D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, Phys. Rev. D 89 (2014) 094005 [arXiv:1402.1189] [INSPIRE].

    ADS  Google Scholar 

  94. F.V. Tkachov, Measuring multi-jet structure of hadronic energy flow or What is a jet?, Int. J. Mod. Phys. A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].

  95. J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    ADS  Google Scholar 

  96. M. Jankowiak and A.J. Larkoski, Jet Substructure Without Trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].

    ADS  Google Scholar 

  97. M. Jankowiak and A.J. Larkoski, Angular Scaling in Jets, JHEP 04 (2012) 039 [arXiv:1201.2688] [INSPIRE].

    ADS  Google Scholar 

  98. A.J. Larkoski, QCD Analysis of the Scale-Invariance of Jets, Phys. Rev. D 86 (2012) 054004 [arXiv:1207.1437] [INSPIRE].

    ADS  Google Scholar 

  99. J. Gallicchio and M.D. Schwartz, Quark and Gluon Jet Substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].

    ADS  Google Scholar 

  100. A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  101. A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].

    ADS  Google Scholar 

  102. I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].

    ADS  Google Scholar 

  103. P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: A complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].

    ADS  Google Scholar 

  104. H. Chen, M.-X. Luo, I. Moult, T.-Z. Yang, X. Zhang and H.X. Zhu, Three Point Energy Correlators in the Collinear Limit: Symmetries, Dualities and Analytic Results, arXiv:1912.11050 [INSPIRE].

  105. C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].

    ADS  Google Scholar 

  106. J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].

    ADS  Google Scholar 

  107. J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black and B. Tweedie, Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].

    ADS  Google Scholar 

  108. A. Hook, M. Jankowiak and J.G. Wacker, Jet Dipolarity: Top Tagging with Color Flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].

    ADS  Google Scholar 

  109. S. Choi, S.J. Lee and M. Perelstein, Infrared Safety of a Neural-Net Top Tagging Algorithm, JHEP 02 (2019) 132 [arXiv:1806.01263] [INSPIRE].

    ADS  Google Scholar 

  110. S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T. Plehn and J. Thompson, Deep-Learning Jets with Uncertainties and More, SciPost Phys. 8 (2020) 006 [arXiv:1904.10004] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  111. G. Kasieczka, M. Luchmann, F. Otterpohl and T. Plehn, Per-Object Systematics using Deep-Learned Calibration, arXiv:2003.11099 [INSPIRE].

  112. M. Gori, G. Monfardini and F. Scarselli, A new model for learning in graph domains, in proceedings of 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–734, vol. 2, July 2005 [DOI].

  113. F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner and G. Monfardini, The graph neural network model, IEEE Trans. Neural Networks 20 (2009) 61.

    Google Scholar 

  114. D. Raposo, A. Santoro, D.G.T. Barrett, R. Pascanu, T.P. Lillicrap and P.W. Battaglia, Discovering objects and their relations from entangled scene representations, CoRR abs/1702.05068 (2017) [arXiv:1702.05068].

  115. A. Santoro et al., A simple neural network module for relational reasoning, in Advances in Neural Information Processing Systems 30, I. Guyon et al. eds., pp. 4967–4976m Curran Associates, Inc. (2017).

  116. P.W. Battaglia et al., Relational inductive biases, deep learning, and graph networks, CoRR abs/1806.01261 (2018) [arXiv:1806.01261].

  117. I. Henrion et al., Neural message passing for jet physics, in Proceedings of the Deep Learning for Physical Sciences (DLPS) 2017 workshop at the 31st Annual Conference on Neural Information Processing Systems (NeurlIPS), 2017.

  118. S.R. Qasim, J. Kieseler, Y. Iiyama and M. Pierini, Learning representations of irregular particle-detector geometry with distance-weighted graph networks, Eur. Phys. J. C 79 (2019) 608 [arXiv:1902.07987] [INSPIRE].

    ADS  Google Scholar 

  119. M. Abdughani, J. Ren, L. Wu and J.M. Yang, Probing stop pair production at the LHC with graph neural networks, JHEP 08 (2019) 055 [arXiv:1807.09088] [INSPIRE].

    ADS  Google Scholar 

  120. E.A. Moreno et al., JEDI-net: a jet identification algorithm based on interaction networks, Eur. Phys. J. C 80 (2020) 58 [arXiv:1908.05318] [INSPIRE].

    ADS  Google Scholar 

  121. E.A. Moreno et al., Interaction networks for the identification of boosted H → \( b\overline{b} \) decays, arXiv:1909.12285 [INSPIRE].

  122. J. Ren, L. Wu and J.M. Yang, Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC, Phys. Lett. B 802 (2020) 135198 [arXiv:1901.05627] [INSPIRE].

    Google Scholar 

  123. V. Mikuni and F. Canelli, ABCNet: An attention-based method for particle tagging, Eur. Phys. J. Plus 135 (2020) 463 [arXiv:2001.05311] [INSPIRE].

    Google Scholar 

  124. T. Bister, M. Erdmann, J. Glombitza, N. Langner, J. Schulte and M. Wirtz, Identification of Patterns in Cosmic-Ray Arrival Directions using Dynamic Graph Convolutional Neural Networks, arXiv:2003.13038 [INSPIRE].

  125. C. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy correlations in electron-positron annihilation: testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [INSPIRE].

    ADS  Google Scholar 

  126. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 19 (1979) 2018 [INSPIRE].

    ADS  Google Scholar 

  127. C. Basham and S.T. Love, Energy Correlations in Electron-Positron Annihilation: Sensitivity of Quantum Chromodynamics Tests to Gluon Spin, Phys. Rev. D 20 (1979) 340 [INSPIRE].

    ADS  Google Scholar 

  128. C. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in Perturbative Quantum Chromodynamics: A Conjecture for All Orders, Phys. Lett. B 85 (1979) 297 [INSPIRE].

    ADS  Google Scholar 

  129. K.R. Mecke, T. Buchert and H. Wagner, Robust morphological measures for large scale structure in the universe, Astron. Astrophys. 288 (1994) 697 [astro-ph/9312028] [INSPIRE].

  130. J. Schmalzing, M. Kerscher and T. Buchert, Minkowski functionals in cosmology, Proc. Int. Sch. Phys. Fermi 132 (1996) 281 [astro-ph/9508154] [INSPIRE].

  131. J. Schmalzing and T. Buchert, Beyond genus statistics: A Unifying approach to the morphology of cosmic structure, Astrophys. J. Lett. 482 (1997) L1 [astro-ph/9702130] [INSPIRE].

  132. J. Schmalzing and K.M. Gorski, Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps, Mon. Not. Roy. Astron. Soc. 297 (1998) 355 [astro-ph/9710185] [INSPIRE].

  133. S. Winitzki and A. Kosowsky, Minkowski functional description of microwave background gaussianity, New Astron. 3 (1998) 75.

    ADS  Google Scholar 

  134. M. Kerscher et al., Non-Gaussian morphology on large scales: Minkowski functionals of the reflex cluster catalogue, Astron. Astrophys. 377 (2001) 1 [astro-ph/0105150] [INSPIRE].

  135. C. Beisbart, T. Buchert and H. Wagner, Morphometry of spatial patterns, Physica A 293 (2001) 592 [astro-ph/0007459] [INSPIRE].

  136. T. Matsubara, Statistical perturbation theory of cosmic fields. 1. Basic formalism and second order theory, astro-ph/0006269 [INSPIRE].

  137. C. Hikage, E. Komatsu and T. Matsubara, Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-scale Structure, Astrophys. J. 653 (2006) 11 [astro-ph/0607284] [INSPIRE].

  138. D. Göring, M.A. Klatt, C. Stegmann and K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals — Source detection via structure quantification, Astron. Astrophys. 555 (2013) A38 [arXiv:1304.3732] [INSPIRE].

  139. M.A. Klatt and K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals: II. Joint structure quantification, arXiv:1710.03542 [INSPIRE].

  140. M.A. Klatt and K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals: III. Sensitivity increase via a refined structure quantification, arXiv:1710.03543 [INSPIRE].

  141. P. Chingangbam, V. Ganesan, K.P. Yogendran and C. Park, On Minkowski Functionals of CMB polarization, Phys. Lett. B 771 (2017) 67 [arXiv:1705.04454] [INSPIRE].

    ADS  Google Scholar 

  142. P. Pranav et al., Topology and Geometry of Gaussian random fields I: on Betti Numbers, Euler characteristic and Minkowski functionals, Mon. Not. Roy. Astron. Soc. 485 (2019) 4167 [arXiv:1812.07310] [INSPIRE].

    ADS  Google Scholar 

  143. K.R. Mecke, Morphological characterization of patterns in reaction-diffusion systems, Phys. Rev. E 53 (1996) 4794.

    ADS  Google Scholar 

  144. K.R. Mecke, Additivity, convexity, and beyond: Applications of minkowski functionals in statistical physics, in Statistical Physics and Spatial Statistics, K.R. Mecke and D. Stoyan eds., Berlin, Heidelberg, pp. 111–184, Springer Berlin Heidelberg (2000).

  145. H. Mantz, K. Jacobs and K. Mecke, Utilizing minkowski functionals for image analysis: a marching square algorithm, J. Stat. Mech. 2008 (2008) P12015.

    Google Scholar 

  146. J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting H → \( b\overline{b} \) with Machine Learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].

    ADS  Google Scholar 

  147. Y.-T. Chien, Telescoping jets: Probing hadronic event structure with multiple R’s, Phys. Rev. D 90 (2014) 054008 [arXiv:1304.5240] [INSPIRE].

    ADS  Google Scholar 

  148. Y.-T. Chien, A. Emerman, S.-C. Hsu, S. Meehan and Z. Montague, Telescoping jet substructure, arXiv:1711.11041 [INSPIRE].

  149. H. Hadwigeb, Integralsätze im konvexring, Abh. Math. Semin. Univ. Hambg. 20 (1956) 136.

    MATH  Google Scholar 

  150. A. Cole and G. Shiu, Persistent Homology and Non-Gaussianity, JCAP 03 (2018) 025 [arXiv:1712.08159] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  151. A. Cole and G. Shiu, Topological Data Analysis for the String Landscape, JHEP 03 (2019) 054 [arXiv:1812.06960] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  152. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Google Scholar 

  153. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  154. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  155. M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Google Scholar 

  156. DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  157. D. Clevert, T. Unterthiner and S. Hochreiter, Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), in The International Conference on Learning Representations (ICLR), (2016) [arXiv:1511.07289].

  158. S.J. Hanson and L.Y. Pratt, Comparing biases for minimal network construction with back-propagation, in Advances in Neural Information Processing Systems 1, D.S. Touretzky ed., pp. 177–185. Morgan-Kaufmann (1989).

  159. A.S. Weigend, D.E. Rumelhart and B.A. Huberman, Generalization by weight-elimination with application to forecasting, in Advances in Neural Information Processing Systems 3, R.P. Lippmann, J.E. Moody and D.S. Touretzky eds., pp. 875–882, Morgan-Kaufmann (1991).

  160. A. Krogh and J.A. Hertz, A simple weight decay can improve generalization, in Advances in Neural Information Processing Systems 4, J.E. Moody, S.J. Hanson and R.P. Lippmann, eds., pp. 950–957, Morgan-Kaufmann (1992).

  161. D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].

  162. K. He, X. Zhang, S. Ren and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv:1502.01852 [INSPIRE].

  163. F. Chollet et al., Keras, https://keras.io (2015).

  164. M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/ (2015).

  165. F.A. Dreyer, L. Necib, G. Soyez and J. Thaler, Recursive Soft Drop, JHEP 06 (2018) 093 [arXiv:1804.03657] [INSPIRE].

    ADS  Google Scholar 

  166. Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein and J.M. Solomon, Dynamic Graph CNN for Learning on Point Clouds, arXiv:1801.07829 [INSPIRE].

  167. S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He, Aggregated residual transformations for deep neural networks, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017). [arXiv:1611.05431].

  168. K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385 [INSPIRE].

  169. S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12 (2003) 045 [hep-ph/0310083] [INSPIRE].

  170. B.R. Webber, A QCD Model for Jet Fragmentation Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 492 [INSPIRE].

    ADS  Google Scholar 

  171. T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].

  172. B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].

    ADS  Google Scholar 

  173. T. Sjöstrand, Jet Fragmentation of Nearby Partons, Nucl. Phys. B 248 (1984) 469 [INSPIRE].

    ADS  Google Scholar 

  174. A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

    ADS  Google Scholar 

  175. P. Gras et al., Systematics of quark/gluon tagging, JHEP 07 (2017) 091 [arXiv:1704.03878] [INSPIRE].

    ADS  Google Scholar 

  176. A. Andreassen and B. Nachman, Neural Networks for Full Phase-space Reweighting and Parameter Tuning, Phys. Rev. D 101 (2020) 091901 [arXiv:1907.08209] [INSPIRE].

    ADS  Google Scholar 

  177. P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].

  178. J. Bellm et al., Minimum-bias and underlying-event tunes, https://herwig.hepforge.org/tutorials/mpi/tunes.html (2015).

  179. S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++, Eur. Phys. J. C 72 (2012) 2225 [arXiv:1206.0041] [INSPIRE].

    ADS  Google Scholar 

  180. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  MATH  Google Scholar 

  181. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  MATH  Google Scholar 

  182. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

  183. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Kt clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    ADS  Google Scholar 

  184. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hak Lim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.11787

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Lim, S.H., Nojiri, M.M. et al. Neural network-based top tagger with two-point energy correlations and geometry of soft emissions. J. High Energ. Phys. 2020, 111 (2020). https://doi.org/10.1007/JHEP07(2020)111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2020)111

Keywords

  • Jets
  • QCD Phenomenology