A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].
ADS
Google Scholar
R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].
ADS
Google Scholar
D. Guest, K. Cranmer and D. Whiteson, Deep Learning and its Application to LHC Physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].
ADS
Google Scholar
A. Radovic et al., Machine learning at the energy and intensity frontiers of particle physics, Nature 560 (2018) 41 [INSPIRE].
ADS
Google Scholar
M. Abdughani, J. Ren, L. Wu, J.M. Yang and J. Zhao, Supervised deep learning in high energy phenomenology: a mini review, Commun. Theor. Phys. 71 (2019) 955 [arXiv:1905.06047] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].
ADS
Google Scholar
L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images - deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].
Google Scholar
P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].
ADS
MATH
Google Scholar
A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned Top Tagging with a Lorentz Layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].
ADS
Google Scholar
L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly Supervised Classification in High Energy Physics, JHEP 05 (2017) 145 [arXiv:1702.00414] [INSPIRE].
ADS
MATH
Google Scholar
G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].
ADS
Google Scholar
G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet Physics, JHEP 01 (2019) 057 [arXiv:1702.00748] [INSPIRE].
ADS
Google Scholar
T. Cheng, Recursive Neural Networks in Quark/Gluon Tagging, Comput. Softw. Big Sci. 2 (2018) 3 [arXiv:1711.02633] [INSPIRE].
Google Scholar
S. Egan, W. Fedorko, A. Lister, J. Pearkes and C. Gay, Long Short-Term Memory (LSTM) networks with jet constituents for boosted top tagging at the LHC, arXiv:1711.09059 [INSPIRE].
E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].
ADS
Google Scholar
P.T. Komiske, E.M. Metodiev and J. Thaler, Energy Flow Networks: Deep Sets for Particle Jets, JHEP 01 (2019) 121 [arXiv:1810.05165] [INSPIRE].
ADS
Google Scholar
S. Macaluso and D. Shih, Pulling Out All the Tops with Computer Vision and Deep Learning, JHEP 10 (2018) 121 [arXiv:1803.00107] [INSPIRE].
ADS
Google Scholar
A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics, Eur. Phys. J. C 79 (2019) 102 [arXiv:1804.09720] [INSPIRE].
ADS
Google Scholar
S.H. Lim and M.M. Nojiri, Spectral Analysis of Jet Substructure with Neural Networks: Boosted Higgs Case, JHEP 10 (2018) 181 [arXiv:1807.03312] [INSPIRE].
ADS
Google Scholar
H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D 101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].
ADS
Google Scholar
A. Chakraborty, S.H. Lim and M.M. Nojiri, Interpretable deep learning for two-prong jet classification with jet spectra, JHEP 19 (2020) 135 [arXiv:1904.02092] [INSPIRE].
Google Scholar
A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, Binary JUNIPR: an interpretable probabilistic model for discrimination, Phys. Rev. Lett. 123 (2019) 182001 [arXiv:1906.10137] [INSPIRE].
ADS
Google Scholar
Y.-C.J. Chen, C.-W. Chiang, G. Cottin and D. Shih, Boosted W and Z tagging with jet charge and deep learning, Phys. Rev. D 101 (2020) 053001 [arXiv:1908.08256] [INSPIRE].
ADS
Google Scholar
T. Cheng, Interpretability Study on Deep Learning for Jet Physics at the Large Hadron Collider, in 33rd Annual Conference on Neural Information Processing Systems, 11, 2019 [arXiv:1911.01872] [INSPIRE].
K.-F. Chen and Y.-T. Chien, Deep learning jet substructure from two-particle correlations, Phys. Rev. D 101 (2020) 114025 [arXiv:1911.02020] [INSPIRE].
ADS
Google Scholar
G. Kasieczka and D. Shih, DisCo Fever: Robust Networks Through Distance Correlation, arXiv:2001.05310 [INSPIRE].
T. Heimel, G. Kasieczka, T. Plehn and J.M. Thompson, QCD or What?, SciPost Phys. 6 (2019) 030 [arXiv:1808.08979] [INSPIRE].
ADS
Google Scholar
M. Farina, Y. Nakai and D. Shih, Searching for New Physics with Deep Autoencoders, Phys. Rev. D 101 (2020) 075021 [arXiv:1808.08992] [INSPIRE].
ADS
Google Scholar
J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty Detection Meets Collider Physics, Phys. Rev. D 101 (2020) 076015 [arXiv:1807.10261] [INSPIRE].
ADS
Google Scholar
B.M. Dillon, D.A. Faroughy and J.F. Kamenik, Uncovering latent jet substructure, Phys. Rev. D 100 (2019) 056002 [arXiv:1904.04200] [INSPIRE].
ADS
Google Scholar
S. Diefenbacher, H. Frost, G. Kasieczka, T. Plehn and J.M. Thompson, CapsNets Continuing the Convolutional Quest, SciPost Phys. 8 (2020) 023 [arXiv:1906.11265] [INSPIRE].
ADS
Google Scholar
A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].
ADS
Google Scholar
T.S. Roy and A.H. Vijay, A robust anomaly finder based on autoencoder, arXiv:1903.02032 [INSPIRE].
J.H. Collins, K. Howe and B. Nachman, Extending the search for new resonances with machine learning, Phys. Rev. D 99 (2019) 014038 [arXiv:1902.02634] [INSPIRE].
ADS
Google Scholar
O. Amram and C.M. Suarez, Tag N’ Train: A Technique to Train Improved Classifiers on Unlabeled Data, arXiv:2002.12376 [INSPIRE].
B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev. D 101 (2020) 075042 [arXiv:2001.04990] [INSPIRE].
ADS
Google Scholar
A. Andreassen, B. Nachman and D. Shih, Simulation Assisted Likelihood-free Anomaly Detection, Phys. Rev. D 101 (2020) 095004 [arXiv:2001.05001] [INSPIRE].
ADS
Google Scholar
D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment, Tech. Rep. ATL-PHYS-PUB-2017-003 (2017).
CMS collaboration, Heavy flavor identification at CMS with deep neural networks, Tech. Rep. CMS-DP-2017-005 (2017).
J. Arjona Martínez, O. Cerri, M. Pierini, M. Spiropulu and J.-R. Vlimant, Pileup mitigation at the Large Hadron Collider with graph neural networks, Eur. Phys. J. Plus 134 (2019) 333 [arXiv:1810.07988] [INSPIRE].
Google Scholar
P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].
ADS
Google Scholar
P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Learning to Remove Pileup at the LHC with Jet Images, J. Phys. Conf. Ser. 1085 (2018) 042010 [INSPIRE].
Google Scholar
J. Bendavid, Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks, arXiv:1707.00028 [INSPIRE].
M.D. Klimek and M. Perelstein, Neural Network-Based Approach to Phase Space Integration, arXiv:1810.11509 [INSPIRE].
S. Otten et al., Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer, arXiv:1901.00875 [INSPIRE].
B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC analysis-specific datasets with Generative Adversarial Networks, arXiv:1901.05282 [INSPIRE].
R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC, JHEP 08 (2019) 110 [arXiv:1903.02433] [INSPIRE].
ADS
Google Scholar
A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7 (2019) 075 [arXiv:1907.03764] [INSPIRE].
ADS
Google Scholar
S. Carrazza and F.A. Dreyer, Lund jet images from generative and cycle-consistent adversarial networks, Eur. Phys. J. C 79 (2019) 979 [arXiv:1909.01359] [INSPIRE].
ADS
Google Scholar
SHiP collaboration, Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks, 2019 JINST 14 P11028 [arXiv:1909.04451] [INSPIRE].
A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Subtraction, arXiv:1912.08824 [INSPIRE].
F. Bishara and M. Montull, (Machine) Learning Amplitudes for Faster Event Generation, arXiv:1912.11055 [INSPIRE].
E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Exploring phase space with Neural Importance Sampling, SciPost Phys. 8 (2020) 069 [arXiv:2001.05478] [INSPIRE].
ADS
Google Scholar
C. Gao, J. Isaacson and C. Krause, i-flow: High-Dimensional Integration and Sampling with Normalizing Flows, arXiv:2001.05486 [INSPIRE].
C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event Generation with Normalizing Flows, Phys. Rev. D 101 (2020) 076002 [arXiv:2001.10028] [INSPIRE].
ADS
Google Scholar
K.T. Matchev and P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics, arXiv:2002.06307 [INSPIRE].
S. Badger and J. Bullock, Using neural networks for efficient evaluation of high multiplicity scattering amplitudes, JHEP 06 (2020) 114 [arXiv:2002.07516] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Andreassen, P.T. Komiske, E.M. Metodiev, B. Nachman and J. Thaler, OmniFold: A Method to Simultaneously Unfold All Observables, Phys. Rev. Lett. 124 (2020) 182001 [arXiv:1911.09107] [INSPIRE].
ADS
Google Scholar
M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder, How to GAN away Detector Effects, SciPost Phys. 8 (2020) 070 [arXiv:1912.00477] [INSPIRE].
ADS
Google Scholar
S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [INSPIRE].
S. Forte, J.I. Latorre, L. Magnea and A. Piccione, Determination of αs from scaling violations of truncated moments of structure functions, Nucl. Phys. B 643 (2002) 477 [hep-ph/0205286] [INSPIRE].
J. Rojo and J.I. Latorre, Neural network parametrization of spectral functions from hadronic tau decays and determination of QCD vacuum condensates, JHEP 01 (2004) 055 [hep-ph/0401047] [INSPIRE].
NNPDF collaboration, Unbiased determination of the proton structure function \( {F}_2^p \) with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [INSPIRE].
NNPDF collaboration, Neural network determination of parton distributions: The Nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [INSPIRE].
NNPDF collaboration, A Determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].
NNPDF collaboration, Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].
R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].
ADS
MATH
Google Scholar
NNPDF collaboration, Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys. B 849 (2011) 112 [Erratum ibid. 854 (2012) 926] [Erratum ibid. 855 (2012) 927] [arXiv:1012.0836] [INSPIRE].
R.D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].
ADS
Google Scholar
S. Lionetti et al., Precision determination of αs using an unbiased global NLO parton set, Phys. Lett. B 701 (2011) 346 [arXiv:1103.2369] [INSPIRE].
ADS
Google Scholar
R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
ADS
Google Scholar
NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
NNPDF collaboration, Towards the determination of the photon parton distribution function constrained by LHC data, PoS DIS2013 (2013) 279 [arXiv:1307.1131] [INSPIRE].
NNPDF collaboration, Towards an unbiased determination of parton distributions with QED corrections, in 48th Rencontres de Moriond on QCD and High Energy Interactions, pp. 357–360 (2013) [arXiv:1305.4179] [INSPIRE].
NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
NNPDF collaboration, A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties, Eur. Phys. J. C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].
A. Butter et al., The Machine Learning Landscape of Top Taggers, SciPost Phys. 7 (2019) 014 [arXiv:1902.09914] [INSPIRE].
ADS
Google Scholar
ATLAS collaboration, Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC, Eur. Phys. J. C 79 (2019) 375 [arXiv:1808.07858] [INSPIRE].
J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].
ADS
Google Scholar
J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].
ADS
Google Scholar
D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].
ADS
Google Scholar
S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].
ADS
Google Scholar
CMS collaboration, A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging, Tech. Rep. CMS-PAS-JME-09-001 (2009).
T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].
ADS
Google Scholar
T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].
ADS
Google Scholar
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
ADS
Google Scholar
D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].
ADS
Google Scholar
D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].
ADS
Google Scholar
D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].
ADS
Google Scholar
D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, Phys. Rev. D 89 (2014) 094005 [arXiv:1402.1189] [INSPIRE].
ADS
Google Scholar
F.V. Tkachov, Measuring multi-jet structure of hadronic energy flow or What is a jet?, Int. J. Mod. Phys. A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].
J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].
ADS
Google Scholar
M. Jankowiak and A.J. Larkoski, Jet Substructure Without Trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].
ADS
Google Scholar
M. Jankowiak and A.J. Larkoski, Angular Scaling in Jets, JHEP 04 (2012) 039 [arXiv:1201.2688] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, QCD Analysis of the Scale-Invariance of Jets, Phys. Rev. D 86 (2012) 054004 [arXiv:1207.1437] [INSPIRE].
ADS
Google Scholar
J. Gallicchio and M.D. Schwartz, Quark and Gluon Jet Substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].
ADS
Google Scholar
I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].
ADS
Google Scholar
P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: A complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].
ADS
Google Scholar
H. Chen, M.-X. Luo, I. Moult, T.-Z. Yang, X. Zhang and H.X. Zhu, Three Point Energy Correlators in the Collinear Limit: Symmetries, Dualities and Analytic Results, arXiv:1912.11050 [INSPIRE].
C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].
ADS
Google Scholar
J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].
ADS
Google Scholar
J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black and B. Tweedie, Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].
ADS
Google Scholar
A. Hook, M. Jankowiak and J.G. Wacker, Jet Dipolarity: Top Tagging with Color Flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].
ADS
Google Scholar
S. Choi, S.J. Lee and M. Perelstein, Infrared Safety of a Neural-Net Top Tagging Algorithm, JHEP 02 (2019) 132 [arXiv:1806.01263] [INSPIRE].
ADS
Google Scholar
S. Bollweg, M. Haußmann, G. Kasieczka, M. Luchmann, T. Plehn and J. Thompson, Deep-Learning Jets with Uncertainties and More, SciPost Phys. 8 (2020) 006 [arXiv:1904.10004] [INSPIRE].
ADS
MathSciNet
Google Scholar
G. Kasieczka, M. Luchmann, F. Otterpohl and T. Plehn, Per-Object Systematics using Deep-Learned Calibration, arXiv:2003.11099 [INSPIRE].
M. Gori, G. Monfardini and F. Scarselli, A new model for learning in graph domains, in proceedings of 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–734, vol. 2, July 2005 [DOI].
F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner and G. Monfardini, The graph neural network model, IEEE Trans. Neural Networks 20 (2009) 61.
Google Scholar
D. Raposo, A. Santoro, D.G.T. Barrett, R. Pascanu, T.P. Lillicrap and P.W. Battaglia, Discovering objects and their relations from entangled scene representations, CoRR abs/1702.05068 (2017) [arXiv:1702.05068].
A. Santoro et al., A simple neural network module for relational reasoning, in Advances in Neural Information Processing Systems 30, I. Guyon et al. eds., pp. 4967–4976m Curran Associates, Inc. (2017).
P.W. Battaglia et al., Relational inductive biases, deep learning, and graph networks, CoRR abs/1806.01261 (2018) [arXiv:1806.01261].
I. Henrion et al., Neural message passing for jet physics, in Proceedings of the Deep Learning for Physical Sciences (DLPS) 2017 workshop at the 31st Annual Conference on Neural Information Processing Systems (NeurlIPS), 2017.
S.R. Qasim, J. Kieseler, Y. Iiyama and M. Pierini, Learning representations of irregular particle-detector geometry with distance-weighted graph networks, Eur. Phys. J. C 79 (2019) 608 [arXiv:1902.07987] [INSPIRE].
ADS
Google Scholar
M. Abdughani, J. Ren, L. Wu and J.M. Yang, Probing stop pair production at the LHC with graph neural networks, JHEP 08 (2019) 055 [arXiv:1807.09088] [INSPIRE].
ADS
Google Scholar
E.A. Moreno et al., JEDI-net: a jet identification algorithm based on interaction networks, Eur. Phys. J. C 80 (2020) 58 [arXiv:1908.05318] [INSPIRE].
ADS
Google Scholar
E.A. Moreno et al., Interaction networks for the identification of boosted H → \( b\overline{b} \) decays, arXiv:1909.12285 [INSPIRE].
J. Ren, L. Wu and J.M. Yang, Unveiling CP property of top-Higgs coupling with graph neural networks at the LHC, Phys. Lett. B 802 (2020) 135198 [arXiv:1901.05627] [INSPIRE].
Google Scholar
V. Mikuni and F. Canelli, ABCNet: An attention-based method for particle tagging, Eur. Phys. J. Plus 135 (2020) 463 [arXiv:2001.05311] [INSPIRE].
Google Scholar
T. Bister, M. Erdmann, J. Glombitza, N. Langner, J. Schulte and M. Wirtz, Identification of Patterns in Cosmic-Ray Arrival Directions using Dynamic Graph Convolutional Neural Networks, arXiv:2003.13038 [INSPIRE].
C. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy correlations in electron-positron annihilation: testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [INSPIRE].
ADS
Google Scholar
C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron-Positron Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 19 (1979) 2018 [INSPIRE].
ADS
Google Scholar
C. Basham and S.T. Love, Energy Correlations in Electron-Positron Annihilation: Sensitivity of Quantum Chromodynamics Tests to Gluon Spin, Phys. Rev. D 20 (1979) 340 [INSPIRE].
ADS
Google Scholar
C. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in Perturbative Quantum Chromodynamics: A Conjecture for All Orders, Phys. Lett. B 85 (1979) 297 [INSPIRE].
ADS
Google Scholar
K.R. Mecke, T. Buchert and H. Wagner, Robust morphological measures for large scale structure in the universe, Astron. Astrophys. 288 (1994) 697 [astro-ph/9312028] [INSPIRE].
J. Schmalzing, M. Kerscher and T. Buchert, Minkowski functionals in cosmology, Proc. Int. Sch. Phys. Fermi 132 (1996) 281 [astro-ph/9508154] [INSPIRE].
J. Schmalzing and T. Buchert, Beyond genus statistics: A Unifying approach to the morphology of cosmic structure, Astrophys. J. Lett. 482 (1997) L1 [astro-ph/9702130] [INSPIRE].
J. Schmalzing and K.M. Gorski, Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps, Mon. Not. Roy. Astron. Soc. 297 (1998) 355 [astro-ph/9710185] [INSPIRE].
S. Winitzki and A. Kosowsky, Minkowski functional description of microwave background gaussianity, New Astron. 3 (1998) 75.
ADS
Google Scholar
M. Kerscher et al., Non-Gaussian morphology on large scales: Minkowski functionals of the reflex cluster catalogue, Astron. Astrophys. 377 (2001) 1 [astro-ph/0105150] [INSPIRE].
C. Beisbart, T. Buchert and H. Wagner, Morphometry of spatial patterns, Physica A 293 (2001) 592 [astro-ph/0007459] [INSPIRE].
T. Matsubara, Statistical perturbation theory of cosmic fields. 1. Basic formalism and second order theory, astro-ph/0006269 [INSPIRE].
C. Hikage, E. Komatsu and T. Matsubara, Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-scale Structure, Astrophys. J. 653 (2006) 11 [astro-ph/0607284] [INSPIRE].
D. Göring, M.A. Klatt, C. Stegmann and K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals — Source detection via structure quantification, Astron. Astrophys. 555 (2013) A38 [arXiv:1304.3732] [INSPIRE].
M.A. Klatt and K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals: II. Joint structure quantification, arXiv:1710.03542 [INSPIRE].
M.A. Klatt and K. Mecke, Morphometric analysis in gamma-ray astronomy using Minkowski functionals: III. Sensitivity increase via a refined structure quantification, arXiv:1710.03543 [INSPIRE].
P. Chingangbam, V. Ganesan, K.P. Yogendran and C. Park, On Minkowski Functionals of CMB polarization, Phys. Lett. B 771 (2017) 67 [arXiv:1705.04454] [INSPIRE].
ADS
Google Scholar
P. Pranav et al., Topology and Geometry of Gaussian random fields I: on Betti Numbers, Euler characteristic and Minkowski functionals, Mon. Not. Roy. Astron. Soc. 485 (2019) 4167 [arXiv:1812.07310] [INSPIRE].
ADS
Google Scholar
K.R. Mecke, Morphological characterization of patterns in reaction-diffusion systems, Phys. Rev. E 53 (1996) 4794.
ADS
Google Scholar
K.R. Mecke, Additivity, convexity, and beyond: Applications of minkowski functionals in statistical physics, in Statistical Physics and Spatial Statistics, K.R. Mecke and D. Stoyan eds., Berlin, Heidelberg, pp. 111–184, Springer Berlin Heidelberg (2000).
H. Mantz, K. Jacobs and K. Mecke, Utilizing minkowski functionals for image analysis: a marching square algorithm, J. Stat. Mech. 2008 (2008) P12015.
Google Scholar
J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting H → \( b\overline{b} \) with Machine Learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].
ADS
Google Scholar
Y.-T. Chien, Telescoping jets: Probing hadronic event structure with multiple R’s, Phys. Rev. D 90 (2014) 054008 [arXiv:1304.5240] [INSPIRE].
ADS
Google Scholar
Y.-T. Chien, A. Emerman, S.-C. Hsu, S. Meehan and Z. Montague, Telescoping jet substructure, arXiv:1711.11041 [INSPIRE].
H. Hadwigeb, Integralsätze im konvexring, Abh. Math. Semin. Univ. Hambg. 20 (1956) 136.
MATH
Google Scholar
A. Cole and G. Shiu, Persistent Homology and Non-Gaussianity, JCAP 03 (2018) 025 [arXiv:1712.08159] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Cole and G. Shiu, Topological Data Analysis for the String Landscape, JHEP 03 (2019) 054 [arXiv:1812.06960] [INSPIRE].
MathSciNet
MATH
Google Scholar
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
ADS
Google Scholar
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
ADS
Google Scholar
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
D. Clevert, T. Unterthiner and S. Hochreiter, Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), in The International Conference on Learning Representations (ICLR), (2016) [arXiv:1511.07289].
S.J. Hanson and L.Y. Pratt, Comparing biases for minimal network construction with back-propagation, in Advances in Neural Information Processing Systems 1, D.S. Touretzky ed., pp. 177–185. Morgan-Kaufmann (1989).
A.S. Weigend, D.E. Rumelhart and B.A. Huberman, Generalization by weight-elimination with application to forecasting, in Advances in Neural Information Processing Systems 3, R.P. Lippmann, J.E. Moody and D.S. Touretzky eds., pp. 875–882, Morgan-Kaufmann (1991).
A. Krogh and J.A. Hertz, A simple weight decay can improve generalization, in Advances in Neural Information Processing Systems 4, J.E. Moody, S.J. Hanson and R.P. Lippmann, eds., pp. 950–957, Morgan-Kaufmann (1992).
D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].
K. He, X. Zhang, S. Ren and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv:1502.01852 [INSPIRE].
F. Chollet et al., Keras, https://keras.io (2015).
M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/ (2015).
F.A. Dreyer, L. Necib, G. Soyez and J. Thaler, Recursive Soft Drop, JHEP 06 (2018) 093 [arXiv:1804.03657] [INSPIRE].
ADS
Google Scholar
Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein and J.M. Solomon, Dynamic Graph CNN for Learning on Point Clouds, arXiv:1801.07829 [INSPIRE].
S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He, Aggregated residual transformations for deep neural networks, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017). [arXiv:1611.05431].
K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385 [INSPIRE].
S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12 (2003) 045 [hep-ph/0310083] [INSPIRE].
B.R. Webber, A QCD Model for Jet Fragmentation Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 492 [INSPIRE].
ADS
Google Scholar
T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].
B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].
ADS
Google Scholar
T. Sjöstrand, Jet Fragmentation of Nearby Partons, Nucl. Phys. B 248 (1984) 469 [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].
ADS
Google Scholar
P. Gras et al., Systematics of quark/gluon tagging, JHEP 07 (2017) 091 [arXiv:1704.03878] [INSPIRE].
ADS
Google Scholar
A. Andreassen and B. Nachman, Neural Networks for Full Phase-space Reweighting and Parameter Tuning, Phys. Rev. D 101 (2020) 091901 [arXiv:1907.08209] [INSPIRE].
ADS
Google Scholar
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
J. Bellm et al., Minimum-bias and underlying-event tunes, https://herwig.hepforge.org/tutorials/mpi/tunes.html (2015).
S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++, Eur. Phys. J. C 72 (2012) 2225 [arXiv:1206.0041] [INSPIRE].
ADS
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
ADS
MATH
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
ADS
MATH
Google Scholar
M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Kt clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].
ADS
Google Scholar
S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].