Abstract
We study the action growth rate in the Wheeler-DeWitt (WDW) patch for a variety of D ≥ 4 black holes in Einstein gravity that are asymptotic to the anti-de Sitter spacetime, with spherical, toric and hyperbolic horizons, corresponding to the topological parameter k = 1, 0, −1 respectively. We find a lower bound inequality \( {\left.\frac{1}{T}\frac{\partial {\overset{\cdot }{I}}_{\mathrm{WDW}}}{\partial S}\right|}_{Q,{P}_{\mathrm{th}}}>C \) for k = 0, 1, where C is some order-one numerical constant. The lowest number in our examples is C = (D − 3)/(D − 2). We also find that the quantity \( \left({\overset{\cdot }{I}}_{\mathrm{WDW}}-2{P}_{\mathrm{th}}\Delta {V}_{\mathrm{th}}\right) \) is greater than, equal to, or less than zero, for k = 1, 0, −1 respectively. For black holes with two horizons, ∆Vth = \( {V}_{\mathrm{th}}^{+} \) − \( {V}_{\mathrm{th}}^{-} \), i.e. the difference between the thermodynamical volumes of the outer and inner horizons. For black holes with only one horizon, we introduce a new concept of the volume \( {V}_{\mathrm{th}}^0 \) of the black hole singularity, and define \( \Delta {V}_{\mathrm{th}}={V}_{\mathrm{th}}^{+}-{V}_{\mathrm{th}}^0 \). The volume \( {V}_{\mathrm{th}}^0 \) vanishes for the Schwarzschild black hole, but in general it can be positive, negative or even divergent. For black holes with single horizon, we find a relation between \( {\overset{\cdot }{I}}_{\mathrm{WDW}} \) and \( {V}_{\mathrm{th}}^0 \), which implies that the holographic complexity preserves the Lloyd’s bound for positive or vanishing \( {V}_{\mathrm{th}}^0 \), but the bound is violated when \( {V}_{\mathrm{th}}^0 \) becomes negative. We also find explicit black hole examples where \( {V}_{\mathrm{th}}^0 \) and hence \( {\overset{\cdot }{I}}_{\mathrm{WDW}} \) are divergent.
References
J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].
L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 24 [Addendum ibid. 64 (2016) 44] [arXiv:1402.5674] [INSPIRE].
D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].
A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].
A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].
Y. Zhao, Complexity and Boost Symmetry, Phys. Rev. D 98 (2018) 086011 [arXiv:1702.03957] [INSPIRE].
S.-J. Zhang, Complexity and phase transitions in a holographic QCD model, Nucl. Phys. B 929 (2018) 243 [arXiv:1712.07583] [INSPIRE].
Z.-Y. Fan and M. Guo, Holographic complexity under a global quantum quench, Nucl. Phys. B 950 (2020) 114818 [arXiv:1811.01473] [INSPIRE].
J. Jiang, Action growth rate for a higher curvature gravitational theory, Phys. Rev. D 98 (2018) 086018 [arXiv:1810.00758] [INSPIRE].
S.A. Hosseini Mansoori, V. Jahnke, M.M. Qaemmaqami and Y.D. Olivas, Holographic complexity of anisotropic black branes, Phys. Rev. D 100 (2019) 046014 [arXiv:1808.00067] [INSPIRE].
H. Ghaffarnejad, M. Farsam and E. Yaraie, Effects of quintessence dark energy on the action growth and butterfly velocity, Adv. High Energy Phys. 2020 (2020) 9529356 [arXiv:1806.05735] [INSPIRE].
E. Yaraie, H. Ghaffarnejad and M. Farsam, Complexity growth and shock wave geometry in AdS-Maxwell-power-Yang-Mills theory, Eur. Phys. J. C 78 (2018) 967 [arXiv:1806.07242] [INSPIRE].
Y.-S. An and R.-H. Peng, Effect of the dilaton on holographic complexity growth, Phys. Rev. D 97 (2018) 066022 [arXiv:1801.03638] [INSPIRE].
J. Jiang, Holographic complexity in charged Vaidya black hole, Eur. Phys. J. C 79 (2019) 130 [arXiv:1811.07347] [INSPIRE].
H. Huang, X.-H. Feng and H. Lü, Holographic Complexity and Two Identities of Action Growth, Phys. Lett. B 769 (2017) 357 [arXiv:1611.02321] [INSPIRE].
W.-J. Pan and Y.-C. Huang, Holographic complexity and action growth in massive gravities, Phys. Rev. D 95 (2017) 126013 [arXiv:1612.03627] [INSPIRE].
M. Alishahiha, A. Faraji Astaneh, A. Naseh and M.H. Vahidinia, On complexity for F(R) and critical gravity, JHEP 05 (2017) 009 [arXiv:1702.06796] [INSPIRE].
P. Wang, H. Yang and S. Ying, Action growth in f(R) gravity, Phys. Rev. D 96 (2017) 046007 [arXiv:1703.10006] [INSPIRE].
W.-D. Guo, S.-W. Wei, Y.-Y. Li and Y.-X. Liu, Complexity growth rates for AdS black holes in massive gravity and f(R) gravity, Eur. Phys. J. C 77 (2017) 904 [arXiv:1703.10468] [INSPIRE].
P.A. Cano, R.A. Hennigar and H. Marrochio, Complexity Growth Rate in Lovelock Gravity, Phys. Rev. Lett. 121 (2018) 121602 [arXiv:1803.02795] [INSPIRE].
R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082 [arXiv:1710.00600] [INSPIRE].
X.-H. Feng and H.-S. Liu, Holographic Complexity Growth Rate in Horndeski Theory, Eur. Phys. J. C 79 (2019) 40 [arXiv:1811.03303] [INSPIRE].
J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume and complexity, JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].
Z.-Y. Fan and M. Guo, On the Noether charge and the gravity duals of quantum complexity, JHEP 08 (2018) 031 [Erratum JHEP 09 (2019) 121] [arXiv:1805.03796] [INSPIRE].
S. Mahapatra and P. Roy, On the time dependence of holographic complexity in a dynamical Einstein-dilaton model, JHEP 11 (2018) 138 [arXiv:1808.09917] [INSPIRE].
J. Jiang and X.-W. Li, Adjusted complexity equals action conjecture, Phys. Rev. D 100 (2019) 066026 [arXiv:1903.05476] [INSPIRE].
D. Momeni, M. Faizal, S. Bahamonde and R. Myrzakulov, Holographic complexity for time-dependent backgrounds, Phys. Lett. B 762 (2016) 276 [arXiv:1610.01542] [INSPIRE].
M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].
S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000) 1047 [quant-ph/9908043].
R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].
R.-G. Cai, M. Sasaki and S.-J. Wang, Action growth of charged black holes with a single horizon, Phys. Rev. D 95 (2017) 124002 [arXiv:1702.06766] [INSPIRE].
R.-Q. Yang, Strong energy condition and complexity growth bound in holography, Phys. Rev. D 95 (2017) 086017 [arXiv:1610.05090] [INSPIRE].
D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].
M. Cvetič, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].
H.-S. Liu, Z.-F. Mai, Y.-Z. Li and H. Lü, Quasi-topological Electromagnetism: Dark Energy, Dyonic Black Holes, Stable Photon Spheres and Hidden Electromagnetic Duality, arXiv:1907.10876 [INSPIRE].
H.-S. Liu, H. Lü and C.N. Pope, Generalized Smarr formula and the viscosity bound for Einstein-Maxwell-dilaton black holes, Phys. Rev. D 92 (2015) 064014 [arXiv:1507.02294] [INSPIRE].
H.-S. Liu, H. Lü and C.N. Pope, Holographic Heat Current as Noether Current, JHEP 09 (2017) 146 [arXiv:1708.02329] [INSPIRE].
H.-S. Liu and H. Lü, Thermodynamics of Lifshitz Black Holes, JHEP 12 (2014) 071 [arXiv:1410.6181] [INSPIRE].
M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].
M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].
M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].
X.-H. Feng and H. Lü, Butterfly Velocity Bound and Reverse Isoperimetric Inequality, Phys. Rev. D 95 (2017) 066001 [arXiv:1701.05204] [INSPIRE].
K. Behrndt, M. Cvetič and W.A. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].
D.D.K. Chow, Single-rotation two-charge black holes in gauged supergravity, arXiv:1108.5139 [INSPIRE].
M. Cvetič, H. Lü and C.N. Pope, Gauged six-dimensional supergravity from massive type IIA, Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].
H. Lü, Charged dilatonic AdS black holes and magnetic AdSD−2 × R2 vacua, JHEP 09 (2013) 112 [arXiv:1306.2386] [INSPIRE].
C.J. Gao and S.N. Zhang, Dilaton black holes in de Sitter or Anti-de Sitter universe, Phys. Rev. D 70 (2004) 124019 [hep-th/0411104] [INSPIRE].
A. García A, H. Salazar and J.F. Plebánski, Type-D solutions of the Einstein and Born-Infeld nonlinear-electrodynamics equations, Nuovo Cim. B 84 (1984) 65.
T.K. Dey, Born-Infeld black holes in the presence of a cosmological constant, Phys. Lett. B 595 (2004) 484 [hep-th/0406169] [INSPIRE].
R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [INSPIRE].
S. Li, H. Lü and H. Wei, Dyonic (A)dS Black Holes in Einstein-Born-Infeld Theory in Diverse Dimensions, JHEP 07 (2016) 004 [arXiv:1606.02733] [INSPIRE].
Z.-Y. Fan and H. Lü, Static and Dynamic Hairy Planar Black Holes, Phys. Rev. D 92 (2015) 064008 [arXiv:1505.03557] [INSPIRE].
X.-H. Feng, H. Lü and Q. Wen, Scalar Hairy Black Holes in General Dimensions, Phys. Rev. D 89 (2014) 044014 [arXiv:1312.5374] [INSPIRE].
A. Anabalon, D. Astefanesei and R. Mann, Exact asymptotically flat charged hairy black holes with a dilaton potential, JHEP 10 (2013) 184 [arXiv:1308.1693] [INSPIRE].
K.G. Zloshchastiev, On co-existence of black holes and scalar field, Phys. Rev. Lett. 94 (2005) 121101 [hep-th/0408163] [INSPIRE].
X. Zhang and H. Lü, Exact Black Hole Formation in Asymptotically (A)dS and Flat Spacetimes, Phys. Lett. B 736 (2014) 455 [arXiv:1403.6874] [INSPIRE].
A.R. Brown, H. Gharibyan, H.W. Lin, L. Susskind, L. Thorlacius and Y. Zhao, Complexity of Jackiw-Teitelboim gravity, Phys. Rev. D 99 (2019) 046016 [arXiv:1810.08741] [INSPIRE].
K. Goto, H. Marrochio, R.C. Myers, L. Queimada and B. Yoshida, Holographic Complexity Equals Which Action?, JHEP 02 (2019) 160 [arXiv:1901.00014] [INSPIRE].
H.-S. Liu and H. Lü, Action Growth of Dyonic Black Holes and Electromagnetic Duality, JHEP 09 (2019) 102 [arXiv:1905.06409] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1910.10723
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Liu, HS., Lü, H., Ma, L. et al. Holographic complexity bounds. J. High Energ. Phys. 2020, 90 (2020). https://doi.org/10.1007/JHEP07(2020)090
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2020)090
Keywords
- Black Holes
- Gauge-gravity correspondence
- AdS-CFT Correspondence
- Holography and condensed matter physics (AdS/CMT)