Skip to main content

Fluid-gravity correspondence in the scalar-tensor theory of gravity: (in)equivalence of Einstein and Jordan frames

A preprint version of the article is available at arXiv.


The duality of gravitational dynamics (projected on a null hypersurface) and of fluid dynamics is investigated for the scalar tensor (ST) theory of gravity. The description of ST gravity, in both Einstein and Jordan frames, is analyzed from fluid-gravity viewpoint. In the Einstein frame the dynamical equation for the metric leads to the Damour-Navier- Stokes (DNS) equation with an external forcing term, coming from the scalar field in ST gravity. In the Jordan frame the situation is more subtle. We observe that finding the DNS equation in this frame can lead to two pictures. In one picture, the usual DNS equation is modified by a Coriolis-like force term, which originates completely from the presence of a non-minimally coupled scalar field (ϕ) on the gravity side. Moreover, the identified fluid variables are no longer conformally equivalent with those in the Einstein frame. However, this picture is consistent with the saturation of Kovtun-Son-Starinets (KSS) bound. In the other picture, we find the standard DNS equation (i.e. without the Coriolis-like force), with the fluid variables conformally equivalent with those in Einstein frame. But, the second picture, may not agree with the KSS bound for some values of ϕ. We conclude by rewriting the Raychaudhuri equation and the tidal force equation in terms of the relevant parameters to demonstrate how the expansion scalar and the shear-tensor evolve in the spacetime. Although, the area law of entropy is broken in ST gravity, we show that the rewritten form of Raychaudhuri’s equation correctly results in the generalized second law of black hole thermodynamics.


  1. Supernova Search Team, The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration, Astrophys. J. 560 (2001) 49 [astro-ph/0104455] [INSPIRE].

  2. Supernova Search Team, Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution, Astrophys. J. 607 (2004) 665 [astro-ph/0402512] [INSPIRE].

  3. Supernova Cosmology Project collaboration, New constraints on ΩM , ΩΛ and w from an independent set of eleven high-redshift supernovae observed with HST, Astrophys. J. 598 (2003) 102 [astro-ph/0309368] [INSPIRE].

  4. Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].

  5. Supernova Search Team, Cosmological results from high-z supernovae, Astrophys. J. 594 (2003) 1 [astro-ph/0305008] [INSPIRE].

  6. B.J. Barris et al., 23 High redshift supernovae from the IFA Deep Survey: Doubling the SN sample at z > 0.7, Astrophys. J. 602 (2004) 571 [astro-ph/0310843] [INSPIRE].

  7. Supernova Cosmology Project collaboration, Discovery of a supernova explosion at half the age of the Universe and its cosmological implications, Nature 391 (1998) 51 [astro-ph/9712212] [INSPIRE].

  8. Supernova Search Team, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].

  9. A.G. Riess, A.V. Filippenko, W. Li and B.P. Schmidt, An indication of evolution of type-IA supernovae from their risetimes, Astron. J. 118 (1999) 2668 [astro-ph/9907038] [INSPIRE].

  10. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719] [INSPIRE].

  11. A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 139] [INSPIRE].

  12. A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Adv. Ser. Astrophys. Cosmol. 3 (1987) 149 [INSPIRE].

  13. T. Damour, F. Piazza and G. Veneziano, Runaway dilaton and equivalence principle violations, Phys. Rev. Lett. 89 (2002) 081601 [gr-qc/0204094] [INSPIRE].

  14. T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].

  15. S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, Phys. Rept. 692 (2017) 1 [arXiv:1705.11098] [INSPIRE].

  16. C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in Background Fields, Nucl. Phys. B 262 (1985) 593 [INSPIRE].

  17. G. Esposito-Farese, Scalar tensor theories and cosmology and tests of a quintessence Gauss-Bonnet coupling, in 38th Rencontres de Moriond on Gravitational Waves and Experimental Gravity, 22–29 March 2003, Les Arcs, Savoie, France, gr-qc/0306018 [INSPIRE].

  18. E. Elizalde, S. Nojiri and S.D. Odintsov, Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up, Phys. Rev. D 70 (2004) 043539 [hep-th/0405034] [INSPIRE].

  19. E.N. Saridakis and M. Tsoukalas, Cosmology in new gravitational scalar-tensor theories, Phys. Rev. D 93 (2016) 124032 [arXiv:1601.06734] [INSPIRE].

  20. M. Crisostomi, K. Koyama and G. Tasinato, Extended Scalar-Tensor Theories of Gravity, JCAP 04 (2016) 044 [arXiv:1602.03119] [INSPIRE].

  21. D. Langlois, R. Saito, D. Yamauchi and K. Noui, Scalar-tensor theories and modified gravity in the wake of GW170817, Phys. Rev. D 97 (2018) 061501(R) [arXiv:1711.07403] [INSPIRE].

  22. K. Bhattacharya and B.R. Majhi, Fresh look at the scalar-tensor theory of gravity in Jordan and Einstein frames from undiscussed standpoints, Phys. Rev. D 95 (2017) 064026 [arXiv:1702.07166] [INSPIRE].

  23. K. Bhattacharya, A. Das and B.R. Majhi, Noether and Abbott-Deser-Tekin conserved quantities in scalar-tensor theory of gravity both in Jordan and Einstein frames, Phys. Rev. D 97 (2018) 124013 [arXiv:1803.03771] [INSPIRE].

  24. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Thése de doctorat dÉtat, Universit́e Paris 6, Paris France (1979).

  25. T. Damour, Surface effects in black hole physics, in proceedings of the Second Marcel Grossmann Meeting on General Relativity, Trieste, Italy, 5–11 July 1979, R. Ruffini ed., North Holland, Amsterdam The Netherlands (1982).

  26. R.H. Price and K.S. Thorne, Membrane Viewpoint on Black Holes: Properties and Evolution of the Stretched Horizon, Phys. Rev. D 33 (1986) 915 [INSPIRE].

  27. E. Gourgoulhon and J.L. Jaramillo, A 3 + 1 perspective on null hypersurfaces and isolated horizons, Phys. Rept. 423 (2006) 159 [gr-qc/0503113] [INSPIRE].

  28. T. Padmanabhan, Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces, Phys. Rev. D 83 (2011) 044048 [arXiv:1012.0119] [INSPIRE].

  29. S. Kolekar and T. Padmanabhan, Action Principle for the Fluid-Gravity Correspondence and Emergent Gravity, Phys. Rev. D 85 (2012) 024004 [arXiv:1109.5353] [INSPIRE].

  30. M. Parikh and F. Wilczek, An Action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [INSPIRE].

  31. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].

  32. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].

  33. T.-Z. Huang, Y. Ling, W.-J. Pan, Y. Tian and X.-N. Wu, From Petrov-Einstein to Navier-Stokes in Spatially Curved Spacetime, JHEP 10 (2011) 079 [arXiv:1107.1464] [INSPIRE].

  34. G. Chirco, C. Eling and S. Liberati, Higher Curvature Gravity and the Holographic fluid dual to flat spacetime, JHEP 08 (2011) 009 [arXiv:1105.4482] [INSPIRE].

  35. X. Bai, Y.-P. Hu, B.-H. Lee and Y.-L. Zhang, Holographic Charged Fluid with Anomalous Current at Finite Cutoff Surface in Einstein-Maxwell Gravity, JHEP 11 (2012) 054 [arXiv:1207.5309] [INSPIRE].

  36. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian Approach to Fluid/Gravity Duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

  37. S. Chatterjee, M. Parikh and S. Sarkar, The Black Hole Membrane Paradigm in f (R) Gravity, Class. Quant. Grav. 29 (2012) 035014 [arXiv:1012.6040] [INSPIRE].

  38. R.-G. Cai, T.-J. Li, Y.-H. Qi and Y.-L. Zhang, Incompressible Navier-Stokes Equations from Einstein Gravity with Chern-Simons Term, Phys. Rev. D 86 (2012) 086008 [arXiv:1208.0658] [INSPIRE].

  39. D.-C. Zou, S.-J. Zhang and B. Wang, Holographic charged fluid dual to third order Lovelock gravity, Phys. Rev. D 87 (2013) 084032 [arXiv:1302.0904] [INSPIRE].

  40. Y.-P. Hu, Y. Tian and X.-N. Wu, Bulk Viscosity of dual Fluid at Finite Cutoff Surface via Gravity/Fluid correspondence in Einstein-Maxwell Gravity, Phys. Lett. B 732 (2014) 298 [arXiv:1311.3891] [INSPIRE].

  41. R.-G. Cai, L. Li and Y.-L. Zhang, Non-Relativistic Fluid Dual to Asymptotically AdS Gravity at Finite Cutoff Surface, JHEP 07 (2011) 027 [arXiv:1104.3281] [INSPIRE].

  42. T.-Z. Huang, Y. Ling, W.-J. Pan, Y. Tian and X.-N. Wu, Fluid/gravity duality with Petrov-like boundary condition in a spacetime with a cosmological constant, Phys. Rev. D 85 (2012) 123531 [arXiv:1111.1576] [INSPIRE].

  43. D. Anninos, T. Anous, I. Bredberg and G.S. Ng, Incompressible Fluids of the de Sitter Horizon and Beyond, JHEP 05 (2012) 107 [arXiv:1110.3792] [INSPIRE].

  44. Y. Ling, C. Niu, Y. Tian, X.-N. Wu and W. Zhang, Note on the Petrov-like boundary condition at finite cutoff surface in gravity/fluid duality, Phys. Rev. D 90 (2014) 043525 [arXiv:1306.5633] [INSPIRE].

  45. C. Eling, A. Meyer and Y. Oz, The Relativistic Rindler Hydrodynamics, JHEP 05 (2012) 116 [arXiv:1201.2705] [INSPIRE].

  46. J. Berkeley and D.S. Berman, The Navier-Stokes equation and solution generating symmetries from holography, JHEP 04 (2013) 092 [arXiv:1211.1983] [INSPIRE].

  47. V. Lysov, Dual Fluid for the Kerr Black Hole, JHEP 06 (2018) 080 [arXiv:1712.08079] [INSPIRE].

  48. X.-N. Wu, Y. Ling, Y. Tian and C. Zhang, Fluid/Gravity Correspondence For General Non-rotating Black Holes, Class. Quant. Grav. 30 (2013) 145012 [arXiv:1303.3736] [INSPIRE].

  49. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The Holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].

  50. S. De, S. Dey and B.R. Majhi, Effective metric in fluid-gravity duality through parallel transport: a proposal, Phys. Rev. D 99 (2019) 124024 [arXiv:1901.05735] [INSPIRE].

  51. S. De and B.R. Majhi, Fluid description of gravity on a timelike cut-off surface: beyond Navier-Stokes equation, JHEP 01 (2019) 044 [arXiv:1810.07017] [INSPIRE].

  52. V. Faraoni, E. Gunzig and P. Nardone, Conformal transformations in classical gravitational theories and in cosmology, Fund. Cosmic Phys. 20 (1999) 121 [gr-qc/9811047] [INSPIRE].

  53. I. Quiros and R. De Arcia, On local scale invariance and the questionable theoretical basis of the conformal transformations’ issue, arXiv:1811.02458 [INSPIRE].

  54. A.Y. Kamenshchik and C.F. Steinwachs, Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D 91 (2015) 084033 [arXiv:1408.5769] [INSPIRE].

  55. N. Banerjee and B. Majumder, A question mark on the equivalence of Einstein and Jordan frames, Phys. Lett. B 754 (2016) 129 [arXiv:1601.06152] [INSPIRE].

  56. M.S. Ruf and C.F. Steinwachs, Quantum equivalence of f (R) gravity and scalar-tensor theories, Phys. Rev. D 97 (2018) 044050 [arXiv:1711.07486] [INSPIRE].

  57. E. Frion and C.R. Almeida, Affine quantization of the Brans-Dicke theory: Smooth bouncing and the equivalence between the Einstein and Jordan frames, Phys. Rev. D 99 (2019) 023524 [arXiv:1810.00707] [INSPIRE].

  58. A. Karam, T. Pappas and K. Tamvakis, Frame-dependence of higher-order inflationary observables in scalar-tensor theories, Phys. Rev. D 96 (2017) 064036 [arXiv:1707.00984] [INSPIRE].

  59. S. Bahamonde, S.D. Odintsov, V.K. Oikonomou and P.V. Tretyakov, Deceleration versus acceleration universe in different frames of F (R) gravity, Phys. Lett. B 766 (2017) 225 [arXiv:1701.02381] [INSPIRE].

  60. A. Karam, A. Lykkas and K. Tamvakis, Frame-invariant approach to higher-dimensional scalar-tensor gravity, Phys. Rev. D 97 (2018) 124036 [arXiv:1803.04960] [INSPIRE].

  61. R. Brustein and A.J.M. Medved, The Ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [INSPIRE].

  62. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

  63. V. Faraoni and E. Gunzig, Einstein frame or Jordan frame?, Int. J. Theor. Phys. 38 (1999) 217 [astro-ph/9910176] [INSPIRE].

  64. J.-i. Koga and K.-i. Maeda, Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory, Phys. Rev. D 58 (1998) 064020 [gr-qc/9803086] [INSPIRE].

  65. V. Faraoni, Black hole entropy in scalar-tensor and f (R) gravity: An Overview, Entropy 12 (2010) 1246 [arXiv:1005.2327] [INSPIRE].

  66. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

  67. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

  68. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].

  69. D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

  70. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

  71. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

  72. G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP 11 (2015) 109 [arXiv:1508.05303] [INSPIRE].

  73. G. Kang, On black hole area in Brans-Dicke theory, Phys. Rev. D 54 (1996) 7483 [gr-qc/9606020] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bibhas Ranjan Majhi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2002.04743

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, K., Majhi, B.R. & Singleton, D. Fluid-gravity correspondence in the scalar-tensor theory of gravity: (in)equivalence of Einstein and Jordan frames. J. High Energ. Phys. 2020, 18 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Black Holes
  • Classical Theories of Gravity
  • Gauge-gravity correspondence