P.T. Komiske, E.M. Metodiev and J. Thaler, Metric space of collider events, Phys. Rev. Lett. 123 (2019) 041801 [arXiv:1902.02346] [INSPIRE].
ADS
Google Scholar
F.V. Tkachov, Measuring multi-jet structure of hadronic energy flow or what is a jet?, Int. J. Mod. Phys. A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].
N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].
G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, AIP Conf. Proc. 407 (1997) 988 [hep-ph/9708346] [INSPIRE].
C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy correlations in electron-positron annihilation in quantum chromodynamics: asymptotically free perturbation theory, Phys. Rev. D 19 (1979) 2018 [INSPIRE].
ADS
Google Scholar
P.S. Cherzor and N.A. Sveshnikov, Jet observables and energy momentum tensor, in the proceedings of the 12th International Workshop on High-Energy Physics and Quantum Field Theory (QFTHEP 97), September 4–10, Samara, Russia (1997). hep-ph/9710349 [INSPIRE].
F.V. Tkachov, A theory of jet definition, Int. J. Mod. Phys. A 17 (2002) 2783 [hep-ph/9901444] [INSPIRE].
G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].
A.V. Belitsky, G.P. Korchemsky and G.F. Sterman, Energy flow in QCD and event shape functions, Phys. Lett. B 515 (2001) 297 [hep-ph/0106308] [INSPIRE].
C.F. Berger et al., Snowmass 2001: jet energy flow project, eConf C010630 (2001) P512 [hep-ph/0202207] [INSPIRE].
C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e+ e− event shape distributions with hadronic final states in soft collinear effective theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [INSPIRE].
ADS
Google Scholar
D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].
ADS
Google Scholar
V. Mateu, I.W. Stewart and J. Thaler, Power corrections to event shapes with mass-dependent operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].
ADS
Google Scholar
A.V. Belitsky et al., From correlation functions to event shapes, Nucl. Phys. B 884 (2014) 305 [arXiv:1309.0769] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: a complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].
ADS
Google Scholar
P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow networks: deep sets for particle jets, JHEP 01 (2019) 121 [arXiv:1810.05165] [INSPIRE].
ADS
Google Scholar
P.T. Komiske, E.M. Metodiev and J. Thaler, Cutting multiparticle correlators down to size, Phys. Rev. D 101 (2020) 036019 [arXiv:1911.04491] [INSPIRE].
ADS
Google Scholar
S. Peleg, M. Werman and H. Rom, A unified approach to the change of resolution: space and gray-level, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989) 739.
Google Scholar
Y. Rubner, C. Tomasi and L.J. Guibas, A metric for distributions with applications to image databases, in the proceedings of the 6th International Conference on Computer Vision (ICCV’98), January 8, Washington, U.S.A. (1998).
Y. Rubner, C. Tomasi and L. J. Guibas, The Earth mover’s distance as a metric for image retrieval, Int. J. Comput. Vision 40 (2000) 99.
MATH
Google Scholar
O. Pele and M. Werman, A linear time histogram metric for improved SIFT matching, in the proceedings of the 10th European Conference on Computer Vision (ECCVE 2008), Ocotber 12–18, Marseille, France (2008).
O. Pele and B. Taskar, The tangent Earth mover’s distance, in the proceedings of the 1st International Conference — Geometric Science of Information (GSI 2013), August 28–30, Paris, France (2013).
L.N. Wasserstein, Markov processes over denumerable products of spaces describing large systems of automata, Probl. Inf. Trans. 5 (1969) 47.
MathSciNet
Google Scholar
R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Theor. Prob. Appl. 15 (1970) 458.
MATH
Google Scholar
P.T. Komiske et al., Exploring the space of jets with CMS open data, Phys. Rev. D 101 (2020) 034009 [arXiv:1908.08542] [INSPIRE].
ADS
Google Scholar
A. Mullin, H. Pacey, M. Parker, M. White and S. Williams, Does SUSY have friends? A new approach for LHC event analysis, arXiv:1912.10625 [INSPIRE].
T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].
ADS
MATH
Google Scholar
T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].
ADS
MathSciNet
Google Scholar
G.F. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].
ADS
Google Scholar
G.F. Sterman, Mass divergences in annihilation processes. 1. Origin and nature of divergences in cut vacuum polarization diagrams, Phys. Rev. D 17 (1978) 2773 [INSPIRE].
G.F. Sterman, Mass divergences in annihilation processes. 2. Cancellation of divergences in cut vacuum polarization diagrams, Phys. Rev. D 17 (1978) 2789 [INSPIRE].
G.F. Sterman, Zero mass limit for a class of jet related cross-sections, Phys. Rev. D 19 (1979) 3135 [INSPIRE].
ADS
Google Scholar
G. Sterman et al., Handbook of perturbative QCD, Rev. Mod. Phys. 67 (1995) 157.
ADS
Google Scholar
S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge U.K. (2005).
R. Ellis, W. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (2011) [INSPIRE].
Google Scholar
A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
A.J. Larkoski and J. Thaler, Unsafe but calculable: ratios of angularities in perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, S. Marzani and J. Thaler, Sudakov safety in perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].
ADS
Google Scholar
S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The principal axis of jets. An attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57 [INSPIRE].
E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].
ADS
Google Scholar
H. Georgi and M. Machacek, A simple QCD prediction of jet structure in e+ e− annihilation, Phys. Rev. Lett. 39 (1977) 1237 [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].
ADS
Google Scholar
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N -jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].
ADS
Google Scholar
C. Cesarotti and J. Thaler, A robust measure of event isotropy at colliders, arXiv:2004.06125 [INSPIRE].
S.D. Ellis et al., Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].
ADS
Google Scholar
J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].
ADS
Google Scholar
J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].
ADS
Google Scholar
I.W. Stewart et al., XCone: N -jettiness as an exclusive cone jet algorithm, JHEP 11 (2015) 072 [arXiv:1508.01516] [INSPIRE].
ADS
Google Scholar
J. Thaler and T.F. Wilkason, Resolving boosted jets with XCone, JHEP 12 (2015) 051 [arXiv:1508.01518] [INSPIRE].
ADS
Google Scholar
S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Kt clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].
ADS
Google Scholar
S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
D. Bertolini, T. Chan and J. Thaler, Jet observables without jet algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].
ADS
Google Scholar
G. Salam, \( {E}_t^{\infty } \) scheme, unpublished.
M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].
ADS
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].
ADS
Google Scholar
G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].
ADS
Google Scholar
P. Berta, M. Spousta, D.W. Miller and R. Leitner, Particle-level pileup subtraction for jets and jet shapes, JHEP 06 (2014) 092 [arXiv:1403.3108] [INSPIRE].
ADS
Google Scholar
D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].
ADS
Google Scholar
G. Soyez, Pileup mitigation at the LHC: a theorist’s view, Phys. Rept. 803 (2019) 1 [INSPIRE].
ADS
MathSciNet
Google Scholar
P. Berta, L. Masetti, D.W. Miller and M. Spousta, Pileup and underlying event mitigation with iterative constituent subtraction, JHEP 08 (2019) 175 [arXiv:1905.03470] [INSPIRE].
ADS
Google Scholar
J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Society for Industrial and Applied Mathematics , U.S.A. (2000).
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equation of second order, Springer, Berlin Germany (2001).
J. Brewer, J.G. Milhano and J. Thaler, Sorting out quenched jets, Phys. Rev. Lett. 122 (2019) 222301 [arXiv:1812.05111] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, CMS-PAS-JME-13-002 (2013).
J.D. Bjorken and S.J. Brodsky, Statistical model for electron-positron annihilation into hadrons, Phys. Rev. D 1 (1970) 1416 [INSPIRE].
ADS
Google Scholar
L. Clavelli and D. Wyler, Kinematical bounds on jet variables and the heavy jet mass distribution, Phys. Lett. B 103 (1981) 383 [INSPIRE].
ADS
Google Scholar
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
ADS
Google Scholar
J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991) 2025 [INSPIRE].
ADS
Google Scholar
C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].
G. Parisi, Super inclusive cross-sections, Phys. Lett. B 74 (1978) 65 [INSPIRE].
ADS
Google Scholar
J.F. Donoghue, F.E. Low and S.-Y. Pi, Tensor analysis of hadronic jets in quantum chromodynamics, Phys. Rev. D 20 (1979) 2759 [INSPIRE].
ADS
Google Scholar
R. Ellis, D.A. Ross and A.E. Terrano, The perturbative calculation of jet structure in e+ e− annihilation, Nucl. Phys. B 178 (1981) 421 [INSPIRE].
ADS
Google Scholar
S. Catani and B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].
A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A.J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].
ADS
Google Scholar
I. Moult, L. Necib and J. Thaler, New angles on energy correlation functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].
ADS
Google Scholar
C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].
ADS
Google Scholar
S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].
ADS
Google Scholar
S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].
ADS
Google Scholar
A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative corrections to soft drop jet mass, JHEP 12 (2019) 002 [arXiv:1906.11843] [INSPIRE].
ADS
MathSciNet
Google Scholar
ATLAS collaboration, Impact of alternative inputs and jet grooming on large-R jet performance, ATL-PHYS-PUB-2019-027 (2019).
ATLAS collaboration, Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 101 (2020) 052007 [arXiv:1912.09837] [INSPIRE].
G.F. Sterman, Review of theoretical status: the long and short of high energy Jets, hep-ph/0606032 [INSPIRE].
B.T. Elder et al., Generalized fragmentation functions for fractal jet observables, JHEP 06 (2017) 085 [arXiv:1704.05456] [INSPIRE].
ADS
Google Scholar
S. Alioli et al., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].
ADS
Google Scholar
S. Alioli et al., Matching fully differential NNLO calculations and parton showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].
ADS
Google Scholar
S. Alioli et al., Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski and I. Moult, The singular behavior of jet substructure observables, Phys. Rev. D 93 (2016) 014017 [arXiv:1510.08459] [INSPIRE].
ADS
Google Scholar
A. De Rujula, J.R. Ellis, E.G. Floratos and M.K. Gaillard, QCD Predictions for Hadronic Final States in e+ e− Annihilation, Nucl. Phys. B 138 (1978) 387 [INSPIRE].
ADS
Google Scholar
D.P. Barber et al., Tests of quantum chromodynamics and a direct measurement of the strong coupling constant αS at \( \sqrt{s} \) = 30 GeV, Phys. Lett. B 89 (1979) 139 [INSPIRE].
ADS
Google Scholar
JADE collaboration, Observation of planar three jet events in e+ e− annihilation and evidence for gluon Bremsstrahlung, Phys. Lett. B 91 (1980) 142 [INSPIRE].
TASSO collaboration, Jet production and fragmentation in e+ e− annihilation at 12 GeV to 43 GeV, Z. Phys. C 22 (1984) 307 [INSPIRE].
D. Bender et al., Study of quark fragmentation at 29 GeV: global jet parameters and single particle distributions, Phys. Rev. D 31 (1985) 1 [INSPIRE].
ADS
Google Scholar
MARK-II collaboration, First measurements of hadronic decays of the Z boson, Phys. Rev. Lett. 63 (1989) 1558 [INSPIRE].
AMY collaboration, Multi-hadron event properties in e+ e− annihilation at \( \sqrt{s} \) = 52 GeV to 57 GeV, Phys. Rev. D 41 (1990) 2675 [INSPIRE].
ALEPH collaboration, Measurement of αs from the structure of particle clusters produced in hadronic Z decays, Phys. Lett. B 257 (1991) 479 [INSPIRE].
TASSO collaboration, Global jet properties at 14 GeV to 44 GeV Center-of-mass Energy in e+ e− annihilation, Z. Phys. C 47 (1990) 187 [INSPIRE].
SLD collaboration, Measurement of αs (\( {M}_Z^2 \)) from hadronic event observables at the Z0 resonance, Phys. Rev. D 51 (1995) 962 [hep-ex/9501003] [INSPIRE].
ALEPH collaboration, Studies of QCD at e+ e− centre-of-mass energies between 91 GeV and 209,GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].
DELPHI collaboration, A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP, Eur. Phys. J. C 29 (2003) 285 [hep-ex/0307048] [INSPIRE].
L3 collaboration, Studies of hadronic event structure in e+ e− annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].
OPAL collaboration, Measurement of event shape distributions and moments in e+ e− → hadrons at 91 GeV–209 GeV and a determination of αs , Eur. Phys. J. C 40 (2005) 287 [hep-ex/0503051] [INSPIRE].
A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].
ADS
Google Scholar
A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e+ e− annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].
ADS
Google Scholar
T. Becher and M.D. Schwartz, A precise determination of αs from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].
ADS
Google Scholar
S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].
ADS
Google Scholar
R. Abbate et al., Thrust at N3LL with Power Corrections and a Precision Global Fit for αs (mZ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
ADS
Google Scholar
R. Abbate et al., Precision thrust cumulant moments at N3LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].
ADS
Google Scholar
P.E.L. Rakow and B.R. Webber, Transverse momentum moments of hadron distributions in QCD jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].
ADS
Google Scholar
R. Ellis and B.R. Webber, QCD jet broadening in hadron hadron collisions, Conf. Proc. C860623 (1986) 74 [INSPIRE].
Google Scholar
S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e+ e− annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].
ADS
Google Scholar
Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].
S. Brandt and H.D. Dahmen, Axes and scalar measures of two-jet and three-jet events, Z. Phys. C 1 (1979) 61 [INSPIRE].
ADS
Google Scholar
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].
ADS
Google Scholar
C.F. Berger et al., Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].
ADS
Google Scholar
T.T. Jouttenus et al., Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].
ADS
Google Scholar
J. Rabin, J. Delon and Y. Gousseau, Transportation distances on the circle, J. Math. Imag. Vision 41 (2011) 147.
MathSciNet
MATH
Google Scholar
L.G. Almeida et al., Substructure of high-pT jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].
ADS
Google Scholar
R. Kogler et al., Jet substructure at the Large Hadron Collider: experimental review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].
ADS
Google Scholar
S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, Springer, Germany (2019).
Google Scholar
K. Datta and A. Larkoski, How much information is in a jet?, JHEP 06 (2017) 073 [arXiv:1704.08249] [INSPIRE].
ADS
Google Scholar
K. Datta and A.J. Larkoski, Novel jet observables from machine learning, JHEP 03 (2018) 086 [arXiv:1710.01305] [INSPIRE].
ADS
Google Scholar
A.J. Larkoski and E.M. Metodiev, A theory of quark vs. gluon discrimination, JHEP 10 (2019) 014 [arXiv:1906.01639] [INSPIRE].
J. Thaler, Jet maximization, axis minimization and stable cone finding, Phys. Rev. D 92 (2015) 074001 [arXiv:1506.07876] [INSPIRE].
ADS
Google Scholar
G.C. Blazey et al., Run II jet physics, in the proceedings of QCD and weak boson physics in Run II, March 4–6 and June 3–4, Batavia, U.S.A. (1999).
S.D. Ellis, J. Huston and M. Tonnesmann, On building better cone jet algorithms, eConf C010630 (2001) 513 [hep-ph/0111434] [INSPIRE].
G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].
ADS
Google Scholar
H. Georgi, A simple alternative to jet-clustering algorithms, arXiv:1408.1161 [INSPIRE].
S.-F. Ge, The Georgi algorithms of jet clustering, JHEP 05 (2015) 066 [arXiv:1408.3823] [INSPIRE].
ADS
Google Scholar
Y. Bai, Z. Han and R. Lu, \( {J}_{E_T} \) : a global jet finding algorithm, JHEP 03 (2015) 102 [arXiv:1411.3705] [INSPIRE].
Y. Bai, Z. Han and R. Lu, \( {J}_{E_T}^{\mathrm{II}} \) : a two-prong jet finding algorithm, arXiv:1509.07522 [INSPIRE].
A.Y. Wei, P. Naik, A.W. Harrow and J. Thaler, Quantum algorithms for jet clustering, Phys. Rev. D 101 (2020) 094015 [arXiv:1908.08949] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
ADS
MATH
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
ADS
MATH
Google Scholar
Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in the proceedings of the Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), April 27–30, Hamburg, Germany (1998), hep-ph/9907280 [INSPIRE].
J.M. Butterworth, J.P. Couchman, B.E. Cox and B.M. Waugh, KtJet: A C++ implementation of the K-perpendicular clustering algorithm, Comput. Phys. Commun. 153 (2003) 85 [hep-ph/0210022] [INSPIRE].
M. Dasgupta, L. Schunk and G. Soyez, Jet shapes for boosted jet two-prong decays from first-principles, JHEP 04 (2016) 166 [arXiv:1512.00516] [INSPIRE].
ADS
Google Scholar
D. Krohn, M.D. Schwartz, M. Low and L.-T. Wang, Jet cleansing: pileup removal at high luminosity, Phys. Rev. D 90 (2014) 065020 [arXiv:1309.4777] [INSPIRE].
ADS
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, Use of charged-track information to subtract neutral pileup, Phys. Rev. D 92 (2015) 014003 [arXiv:1404.7353] [INSPIRE].
ADS
Google Scholar
M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].
ADS
Google Scholar
P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051 [arXiv:1707.08600] [INSPIRE].
ADS
Google Scholar
P. Hansen, J.W. Monk and C. Wiglesworth, A wavelet based pile-up mitigation method for the LHC upgrade, arXiv:1812.07412 [INSPIRE].
J. Arjona Martínez et al., Pileup mitigation at the Large Hadron Collider with graph neural networks, Eur. Phys. J. Plus 134 (2019) 333 [arXiv:1810.07988] [INSPIRE].
Google Scholar
V. Hartmann and D. Schuhmacher, Semi-discrete optimal transport-the case p = 1, arXiv:1706.07650.
L. Ambrosio, N. Gigli and G. Savare, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser, Basel, Switzerland (2005).
F. Aurenhammer, R. Klein and D.-T. Lee, Voronoi diagrams and Delaunay triangulations, World Scientific, Singapore (2013).
MATH
Google Scholar
CMS collaboration, Jet primary dataset in AOD format from RunA of 2011 (/Jet/Run2011A-12Oct2013-v1/AOD), CERN Open Data Portal (2016).
M. Liero, A. Mielke and G. Savaré, Optimal entropy-transport problems and a new hellinger–kantorovich distance between positive measures, Inv. Math. 211 (2018) 969.
ADS
MathSciNet
MATH
Google Scholar
D.P. Bourne, B. Schmitzer and B. Wirth, Semi-discrete unbalanced optimal transport and quantization, arXiv:1808.01962.
M. I. Karavelas and M. Yvinec, Dynamic additively weighted Voronoi diagrams in 2D, in the proceedings of Algorithms — ESA 2002, 10th Annual European Symposium, September 17–21, Rome, Italy (2002), Lecture Notes in Computer Science volume 2641, Springer (2002).
D. Geiß, R. Klein, R. Penninger and G. Rote, Optimally solving a transportation problem using voronoi diagrams, Comput. Geom. 46 (2013) 1009.
MathSciNet
MATH
Google Scholar
S. Xin et al., Centroidal power diagrams with capacity constraints: computation, applications, and extension, ACM Trans. Graph. 35 (2016) 244.
Google Scholar
J. Erdmenger, K.T. Grosvenor and R. Jefferson, Information geometry in quantum field theory: lessons from simple examples, SciPost Phys. 8 (2020) 073 [arXiv:2001.02683] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Cheung, TASI lectures on scattering amplitudes, in the proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016), June 6–July 1, Boulder, U.S.A. (2016), arXiv:1708.03872 [INSPIRE].
C. Frye, H. Hannesdottir, N. Paul, M.D. Schwartz and K. Yan, Infrared finiteness and forward scattering, Phys. Rev. D 99 (2019) 056015 [arXiv:1810.10022] [INSPIRE].
ADS
Google Scholar
H. Hannesdottir and M.D. Schwartz, A finite S-matrix, arXiv:1906.03271 [INSPIRE].
H. Hannesdottir and M.D. Schwartz, S-Matrix for massless particles, Phys. Rev. D 101 (2020) 105001 [arXiv:1911.06821] [INSPIRE].
ADS
MathSciNet
Google Scholar
I. Jubran, A. Maalouf and D. Feldman, Introduction to coresets: accurate coresets, arXiv:1910.08707.
A. W. Harrow, Small quantum computers and large classical data sets, arXiv:2004.00026.
S. Claici and J. Solomon, Wasserstein coresets for Lipschitz costs, [arXiv:1805.07412].
S. Bianchini and A. Brancolini, Estimates on path functionals over wasserstein spaces, SIAM J. Math. Anal. 42 (2010) 1179.
MathSciNet
MATH
Google Scholar
M. Agueh and G. Carlier, Barycenters in the Wasserstein space, SIAM J. Math. Anal. 43 (2011) 904.
MathSciNet
MATH
Google Scholar
J. Bertrand and B. R. Kloeckner, A geometric study of wasserstein spaces: an addendum on the boundary, in the proceedings of the 1st International Conference — Geometric Science of Information (GSI 2013), August 28–30, Paris, France (2013).
T. L. Gouic and J. Loubes, Barycenter in Wasserstein spaces: existence and consistency, in the proceedings of the 2nd International Conference — Geometric Science of Information (GSI 2013), October 28–30, Palaiseau, France (2015).
C.W. Bauer, A. Hornig and F.J. Tackmann, Factorization for generic jet production, Phys. Rev. D 79 (2009) 114013 [arXiv:0808.2191] [INSPIRE].
ADS
Google Scholar
A.V. Belitsky et al., Energy-energy correlations in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 112 (2014) 071601 [arXiv:1311.6800] [INSPIRE].
ADS
Google Scholar
L.J. Dixon, I. Moult and H.X. Zhu, Collinear limit of the energy-energy correlator, Phys. Rev. D 100 (2019) 014009 [arXiv:1905.01310] [INSPIRE].
ADS
MathSciNet
Google Scholar
H. Chen et al., Three point energy correlators in the collinear limit: symmetries, dualities and analytic results, arXiv:1912.11050 [INSPIRE].
H. Elvang and Y.-t. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
J.J.M. Carrasco, Gauge and gravity amplitude relations, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders , June 2–27, Boulder, U.S.A. (2014), arXiv:1506.00974 [INSPIRE].
M.C. Romao, N.F. Castro, J.G. Milhano, R. Pedro and T. Vale, Use of a generalized energy mover’s distance in the search for rare phenomena at colliders, arXiv:2004.09360 [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].
A. Radovic et al., Machine learning at the energy and intensity frontiers of particle physics, Nature 560 (2018) 41.
ADS
Google Scholar
G. Carleo et al., Machine learning and the physical sciences, Rev. Mod. Phys. 91 (2019) 045002 [arXiv:1903.10563] [INSPIRE].
ADS
Google Scholar
J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty detection meets collider physics, Phys. Rev. D 101 (2020) 076015 [arXiv:1807.10261] [INSPIRE].
ADS
Google Scholar
T. Heimel, G. Kasieczka, T. Plehn and J.M. Thompson, QCD or What?, SciPost Phys. 6 (2019) 030 [arXiv:1808.08979] [INSPIRE].
ADS
Google Scholar
M. Farina, Y. Nakai and D. Shih, Searching for new physics with deep autoencoders, Phys. Rev. D 101 (2020) 075021 [arXiv:1808.08992] [INSPIRE].
ADS
Google Scholar
T.S. Roy and A.H. Vijay, A robust anomaly finder based on autoencoder, arXiv:1903.02032 [INSPIRE].