Abstract
We attempt to construct eternal traversable wormholes connecting two asymptotically AdS regions by introducing a static coupling between their dual CFTs. We prove that there are no semiclassical traversable wormholes with Poincaré invariance in the boundary directions in higher than two spacetime dimensions. We critically examine the possibility of evading our result by coupling a large number of bulk fields. Static, traversable wormholes with less symmetry may be possible, and could be constructed using the ingredients we develop here.
References
P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP12 (2017) 151 [arXiv:1608.05687] [INSPIRE].
J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].
Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, Class. Quant. Grav.36 (2019) 045006 [arXiv:1807.07917] [INSPIRE].
C. Bachas and I. Lavdas, Quantum gates to other universes, Fortsch. Phys.66 (2018) 1700096 [arXiv:1711.11372] [INSPIRE].
N. Engelhardt and G.T. Horowitz, Holographic consequences of a no transmission principle, Phys. Rev.D 93 (2016) 026005 [arXiv:1509.07509] [INSPIRE].
O. Aharony, M. Berkooz and B. Katz, Non-local effects of multi-trace deformations in the AdS/CFT correspondence, JHEP10 (2005) 097 [hep-th/0504177] [INSPIRE].
L.H. Ford and T.A. Roman, Averaged energy conditions and quantum inequalities, Phys. Rev.D 51 (1995) 4277 [gr-qc/9410043] [INSPIRE].
G. Dvali, Black holes and large N species solution to the hierarchy problem, Fortsch. Phys.58 (2010) 528 [arXiv:0706.2050] [INSPIRE].
G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev.D 77 (2008) 045027 [arXiv:0710.4344] [INSPIRE].
G. Dvali and C. Gomez, Quantum information and gravity cutoff in theories with species, Phys. Lett.B 674 (2009) 303 [arXiv:0812.1940] [INSPIRE].
N. Kaloper, M. Kleban, A. Lawrence and M.S. Sloth, Large field inflation and gravitational entropy, Phys. Rev.D 93 (2016) 043510 [arXiv:1511.05119] [INSPIRE].
M.S. Morris and K.S. Thorne, Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity, Am. J. Phys.56 (1988) 395 [INSPIRE].
M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, time machines and the weak energy condition, Phys. Rev. Lett.61 (1988) 1446 [INSPIRE].
M. Visser, Traversable wormholes: some simple examples, Phys. Rev.D 39 (1989) 3182 [arXiv:0809.0907] [INSPIRE].
M. Visser, Traversable wormholes from surgically modified Schwarzschild space-times, Nucl. Phys.B 328 (1989) 203 [arXiv:0809.0927] [INSPIRE].
E. Poisson and M. Visser, Thin shell wormholes: linearization stability, Phys. Rev.D 52 (1995) 7318 [gr-qc/9506083] [INSPIRE].
C. Barcelo and M. Visser, Traversable wormholes from massless conformally coupled scalar fields, Phys. Lett.B 466 (1999) 127 [gr-qc/9908029] [INSPIRE].
M. Visser, S. Kar and N. Dadhich, Traversable wormholes with arbitrarily small energy condition violations, Phys. Rev. Lett.90 (2003) 201102 [gr-qc/0301003] [INSPIRE].
B. Bhawal and S. Kar, Lorentzian wormholes in Einstein-Gauss-Bonnet theory, Phys. Rev.D 46 (1992) 2464 [INSPIRE].
M. Thibeault, C. Simeone and E.F. Eiroa, Thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term, Gen. Rel. Grav.38 (2006) 1593 [gr-qc/0512029] [INSPIRE].
R.E. Arias, M. Botta Cantcheff and G.A. Silva, Lorentzian AdS, wormholes and holography, Phys. Rev.D 83 (2011) 066015 [arXiv:1012.4478] [INSPIRE].
X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].
N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, U.K. (1984).
J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett.B 215 (1988) 749 [INSPIRE].
Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE].
H. Casini, E. Testé and G. Torroba, Markov property of the conformal field theory vacuum and the a theorem, Phys. Rev. Lett.118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].
K.A. Milton, The Casimir effect: physical manifestations of zero point energy, in 17thSymposium on Theoretical Physics: Applied Field Theory, Seoul, Korea, 29 June-2 July 1998 [hep-th/9901011] [INSPIRE].
D. Bak, C. Kim and S.-H. Yi, Bulk view of teleportation and traversable wormholes, JHEP08 (2018) 140 [arXiv:1805.12349] [INSPIRE].
D. Bak, C. Kim and S.-H. Yi, Transparentizing black holes to eternal traversable wormholes, JHEP03 (2019) 155 [arXiv:1901.07679] [INSPIRE].
A.E. Ingham, A note on Fourier transforms, J. London Math. Soc.s1-9 (1934) 29.
J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [INSPIRE].
D.V. Fursaev and S.N. Solodukhin, On one loop renormalization of black hole entropy, Phys. Lett.B 365 (1996) 51 [hep-th/9412020] [INSPIRE].
F. Larsen and F. Wilczek, Renormalization of black hole entropy and of the gravitational coupling constant, Nucl. Phys.B 458 (1996) 249 [hep-th/9506066] [INSPIRE].
W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev.D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].
W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].
W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev.D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].
S.N. Solodukhin, Newton constant, contact terms and entropy, Phys. Rev.D 91 (2015) 084028 [arXiv:1502.03758] [INSPIRE].
E. Caceres, A.S. Misobuchi and M.-L. Xiao, Rotating traversable wormholes in AdS, JHEP12 (2018) 005 [arXiv:1807.07239] [INSPIRE].
D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys.B 453 (1995) 281 [hep-th/9503016] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1903.05732
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Freivogel, B., Godet, V., Morvan, E. et al. Lessons on eternal traversable wormholes in AdS. J. High Energ. Phys. 2019, 122 (2019). https://doi.org/10.1007/JHEP07(2019)122
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2019)122
Keywords
- AdS-CFT Correspondence
- Gauge-gravity correspondence
- Black Holes