Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Lessons on eternal traversable wormholes in AdS

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 22 July 2019
  • volume 2019, Article number: 122 (2019)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Lessons on eternal traversable wormholes in AdS
Download PDF
  • Ben Freivogel1,2,
  • Victor Godet1,
  • Edward Morvan1,2,
  • Juan F. Pedraza1 &
  • …
  • Antonio Rotundo1 
  • 363 Accesses

  • 20 Citations

  • 2 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We attempt to construct eternal traversable wormholes connecting two asymptotically AdS regions by introducing a static coupling between their dual CFTs. We prove that there are no semiclassical traversable wormholes with Poincaré invariance in the boundary directions in higher than two spacetime dimensions. We critically examine the possibility of evading our result by coupling a large number of bulk fields. Static, traversable wormholes with less symmetry may be possible, and could be constructed using the ingredients we develop here.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  3. J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

  4. Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, Class. Quant. Grav.36 (2019) 045006 [arXiv:1807.07917] [INSPIRE].

  5. C. Bachas and I. Lavdas, Quantum gates to other universes, Fortsch. Phys.66 (2018) 1700096 [arXiv:1711.11372] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  6. N. Engelhardt and G.T. Horowitz, Holographic consequences of a no transmission principle, Phys. Rev.D 93 (2016) 026005 [arXiv:1509.07509] [INSPIRE].

  7. O. Aharony, M. Berkooz and B. Katz, Non-local effects of multi-trace deformations in the AdS/CFT correspondence, JHEP10 (2005) 097 [hep-th/0504177] [INSPIRE].

  8. L.H. Ford and T.A. Roman, Averaged energy conditions and quantum inequalities, Phys. Rev.D 51 (1995) 4277 [gr-qc/9410043] [INSPIRE].

  9. G. Dvali, Black holes and large N species solution to the hierarchy problem, Fortsch. Phys.58 (2010) 528 [arXiv:0706.2050] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev.D 77 (2008) 045027 [arXiv:0710.4344] [INSPIRE].

  11. G. Dvali and C. Gomez, Quantum information and gravity cutoff in theories with species, Phys. Lett.B 674 (2009) 303 [arXiv:0812.1940] [INSPIRE].

  12. N. Kaloper, M. Kleban, A. Lawrence and M.S. Sloth, Large field inflation and gravitational entropy, Phys. Rev.D 93 (2016) 043510 [arXiv:1511.05119] [INSPIRE].

  13. M.S. Morris and K.S. Thorne, Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity, Am. J. Phys.56 (1988) 395 [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, time machines and the weak energy condition, Phys. Rev. Lett.61 (1988) 1446 [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Visser, Traversable wormholes: some simple examples, Phys. Rev.D 39 (1989) 3182 [arXiv:0809.0907] [INSPIRE].

  16. M. Visser, Traversable wormholes from surgically modified Schwarzschild space-times, Nucl. Phys.B 328 (1989) 203 [arXiv:0809.0927] [INSPIRE].

  17. E. Poisson and M. Visser, Thin shell wormholes: linearization stability, Phys. Rev.D 52 (1995) 7318 [gr-qc/9506083] [INSPIRE].

  18. C. Barcelo and M. Visser, Traversable wormholes from massless conformally coupled scalar fields, Phys. Lett.B 466 (1999) 127 [gr-qc/9908029] [INSPIRE].

  19. M. Visser, S. Kar and N. Dadhich, Traversable wormholes with arbitrarily small energy condition violations, Phys. Rev. Lett.90 (2003) 201102 [gr-qc/0301003] [INSPIRE].

  20. B. Bhawal and S. Kar, Lorentzian wormholes in Einstein-Gauss-Bonnet theory, Phys. Rev.D 46 (1992) 2464 [INSPIRE].

  21. M. Thibeault, C. Simeone and E.F. Eiroa, Thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term, Gen. Rel. Grav.38 (2006) 1593 [gr-qc/0512029] [INSPIRE].

  22. R.E. Arias, M. Botta Cantcheff and G.A. Silva, Lorentzian AdS, wormholes and holography, Phys. Rev.D 83 (2011) 066015 [arXiv:1012.4478] [INSPIRE].

  23. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  24. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, U.K. (1984).

  25. J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett.B 215 (1988) 749 [INSPIRE].

  26. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Casini, E. Testé and G. Torroba, Markov property of the conformal field theory vacuum and the a theorem, Phys. Rev. Lett.118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. K.A. Milton, The Casimir effect: physical manifestations of zero point energy, in 17thSymposium on Theoretical Physics: Applied Field Theory, Seoul, Korea, 29 June-2 July 1998 [hep-th/9901011] [INSPIRE].

  29. D. Bak, C. Kim and S.-H. Yi, Bulk view of teleportation and traversable wormholes, JHEP08 (2018) 140 [arXiv:1805.12349] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Bak, C. Kim and S.-H. Yi, Transparentizing black holes to eternal traversable wormholes, JHEP03 (2019) 155 [arXiv:1901.07679] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. A.E. Ingham, A note on Fourier transforms, J. London Math. Soc.s1-9 (1934) 29.

  32. J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [INSPIRE].

  34. D.V. Fursaev and S.N. Solodukhin, On one loop renormalization of black hole entropy, Phys. Lett.B 365 (1996) 51 [hep-th/9412020] [INSPIRE].

  35. F. Larsen and F. Wilczek, Renormalization of black hole entropy and of the gravitational coupling constant, Nucl. Phys.B 458 (1996) 249 [hep-th/9506066] [INSPIRE].

  36. W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev.D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].

  37. W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].

    Article  ADS  Google Scholar 

  38. W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev.D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].

  39. S.N. Solodukhin, Newton constant, contact terms and entropy, Phys. Rev.D 91 (2015) 084028 [arXiv:1502.03758] [INSPIRE].

  40. E. Caceres, A.S. Misobuchi and M.-L. Xiao, Rotating traversable wormholes in AdS, JHEP12 (2018) 005 [arXiv:1807.07239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys.B 453 (1995) 281 [hep-th/9503016] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, University of Amsterdam, 1090 GL, Amsterdam, Netherlands

    Ben Freivogel, Victor Godet, Edward Morvan, Juan F. Pedraza & Antonio Rotundo

  2. GRAPPA, University of Amsterdam, 1090 GL, Amsterdam, Netherlands

    Ben Freivogel & Edward Morvan

Authors
  1. Ben Freivogel
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Victor Godet
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Edward Morvan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Juan F. Pedraza
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Antonio Rotundo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Victor Godet.

Additional information

ArXiv ePrint: 1903.05732

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freivogel, B., Godet, V., Morvan, E. et al. Lessons on eternal traversable wormholes in AdS. J. High Energ. Phys. 2019, 122 (2019). https://doi.org/10.1007/JHEP07(2019)122

Download citation

  • Received: 05 June 2019

  • Accepted: 05 July 2019

  • Published: 22 July 2019

  • DOI: https://doi.org/10.1007/JHEP07(2019)122

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Black Holes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature