Light fermionic WIMP dark matter with light scalar mediator

  • Shigeki Matsumoto
  • Yue-Lin Sming TsaiEmail author
  • Po-Yan Tseng
Open Access
Regular Article - Theoretical Physics


A light fermionic weakly interacting massive particle (WIMP) dark matter is investigated by studying its minimal renormalizable model, where it requires a scalar mediator to have an interaction between the WIMP and standard model particles. We perform a comprehensive likelihood analysis of the model involving the latest but robust constraints and those will be obtained in the near future. In addition, we pay particular attention to properly take the kinematically equilibrium condition into account. It is shown that near-future experiments and observations such as low-mass direct dark matter detections, flavor experiments and CMB observations play important roles to test the model. Still, a wide parameter region will remain even if no WIMP and mediator signals are detected there. We also show that precise Higgs boson measurements at future lepton colliders will significantly test this remaining region.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Bernstein, L.S. Brown and G. Feinberg, The cosmological heavy neutrino problem revisited, Phys. Rev. D 32 (1985) 3261 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of relic densities in the early universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Boehm, T.A. Ensslin and J. Silk, Can annihilating dark matter be lighter than a few GeVs?, J. Phys. G 30 (2004) 279 [astro-ph/0208458] [INSPIRE].
  6. [6]
    C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, MeV dark matter: has it been detected?, Phys. Rev. Lett. 92 (2004) 101301 [astro-ph/0309686] [INSPIRE].
  7. [7]
    H. Murayama and J. Shu, Topological dark matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida, Low-scale gauge mediation and composite messenger dark matter, JHEP 04 (2010) 119 [arXiv:0912.1683] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and dark matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Huo, S. Matsumoto, Y.-L. Sming Tsai and T.T. Yanagida, A scenario of heavy but visible baryonic dark matter, JHEP 09 (2016) 162 [arXiv:1506.06929] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, Global study of the simplest scalar phantom dark matter model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V. Barger, M. McCaskey and G. Shaughnessy, Complex scalar dark matter vis-à-vis CoGeNT, DAMA/LIBRA and XENON100, Phys. Rev. D 82 (2010) 035019 [arXiv:1005.3328] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in self-interacting galactic dark matter haloes, Mon. Not. Roy. Astron. Soc. 423 (2012) 3740 [arXiv:1201.5892] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Rocha et al., Cosmological simulations with self-interacting dark matter I: constant density cores and substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
  23. [23]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    O. Bertolami and R. Rosenfeld, The Higgs portal and an unified model for dark energy and dark matter, Int. J. Mod. Phys. A 23 (2008) 4817 [arXiv:0708.1784] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Matsumoto et al., Observing the coupling between dark matter and Higgs boson at the ILC, in International Linear Collider Workshop (LCWS10 and ILC10), Beijing, China, 26–30 March 2010 [arXiv:1006.5268] [INSPIRE].
  27. [27]
    S. Kanemura, S. Matsumoto, T. Nabeshima and H. Taniguchi, Testing Higgs portal dark matter via Z fusion at a linear collider, Phys. Lett. B 701 (2011) 591 [arXiv:1102.5147] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Kamada, M. Yamada and T.T. Yanagida, Self-interacting dark matter with a vector mediator: kinetic mixing with the \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \) gauge boson, JHEP 03 (2019) 021 [arXiv:1811.02567] [INSPIRE].
  29. [29]
    A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model, JHEP 06 (2018) 117 [arXiv:1805.00651] [INSPIRE].
  30. [30]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  31. [31]
    Y.G. Kim and K.Y. Lee, The minimal model of fermionic dark matter, Phys. Rev. D 75 (2007) 115012 [hep-ph/0611069] [INSPIRE].
  32. [32]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Pospelov and A. Ritz, Higgs decays to dark matter: beyond the minimal model, Phys. Rev. D 84 (2011) 113001 [arXiv:1109.4872] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Esch, M. Klasen and C.E. Yaguna, Detection prospects of singlet fermionic dark matter, Phys. Rev. D 88 (2013) 075017 [arXiv:1308.0951] [INSPIRE].ADSGoogle Scholar
  36. [36]
    K. Ghorbani, Fermionic dark matter with pseudo-scalar Yukawa interaction, JCAP 01 (2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs portal to fermion dark matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    M. Dutra, C.A. de S. Pires and P.S. Rodrigues da Silva, Majorana dark matter through a narrow Higgs portal, JHEP 09 (2015) 147 [arXiv:1504.07222] [INSPIRE].
  39. [39]
    K. Ghorbani and L. Khalkhali, Mono-Higgs signature in a fermionic dark matter model, J. Phys. G 44 (2017) 105004 [arXiv:1608.04559] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Kamada, M. Yamada, T.T. Yanagida and K. Yonekura, SIMP from a strong U(1) gauge theory with a monopole condensation, Phys. Rev. D 94 (2016) 055035 [arXiv:1606.01628] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.A. Evans, S. Gori and J. Shelton, Looking for the WIMP next door, JHEP 02 (2018) 100 [arXiv:1712.03974] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    The GAMBIT Dark Matter Workgroup collaboration, DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].
  44. [44]
    GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].
  45. [45]
    GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].
  46. [46]
    GAMBIT collaboration, Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J. C 77 (2017) 824 [arXiv:1705.07935] [INSPIRE].
  47. [47]
    GAMBIT collaboration, A global fit of the MSSM with GAMBIT, Eur. Phys. J. C 77 (2017) 879 [arXiv:1705.07917] [INSPIRE].
  48. [48]
    P. Athron, J.M. Cornell, F. Kahlhoefer, J. McKay, P. Scott and S. Wild, Impact of vacuum stability, perturbativity and XENON1T on global fits of Z 2 and Z 3 scalar singlet dark matter, Eur. Phys. J. C 78 (2018) 830 [arXiv:1806.11281] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai, WIMP dark matter in a well-tempered regime: a case study on singlet-doublets fermionic WIMP, JHEP 11 (2016) 070 [arXiv:1603.07387] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory, JHEP 10 (2014) 155 [arXiv:1407.1859] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Effective theory of WIMP dark matter supplemented by simplified models: singlet-like Majorana fermion case, Phys. Rev. D 94 (2016) 065034 [arXiv:1604.02230] [INSPIRE].ADSGoogle Scholar
  52. [52]
    G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev. D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].ADSGoogle Scholar
  53. [53]
    H. Leutwyler and M.A. Shifman, Goldstone bosons generate peculiar conformal anomalies, Phys. Lett. B 221 (1989) 384 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
  55. [55]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  56. [56]
    J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys. B 343 (1990) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M.W. Winkler, Decay and detection of a light scalar boson mixing with the Higgs boson, Phys. Rev. D 99 (2019) 015018 [arXiv:1809.01876] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 MeV < m h < 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123 [arXiv:1310.8042] [INSPIRE].
  59. [59]
    E. Duchovni, E. Gross and G. Mikenberg, Motivation and technique for light Higgs boson search, Phys. Rev. D 39 (1989) 365 [INSPIRE].ADSGoogle Scholar
  60. [60]
    T.N. Truong and R.S. Willey, Branching ratios for decays of light Higgs bosons, Phys. Rev. D 40 (1989) 3635 [INSPIRE].ADSGoogle Scholar
  61. [61]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
  62. [62]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  63. [63]
    Planck collaboration, Planck 2015 results VII. High frequency instrument data processing: time-ordered information and beams, Astron. Astrophys. 594 (2016) A7 [arXiv:1502.01586] [INSPIRE].
  64. [64]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  65. [65]
    CRESST collaboration, First results on low-mass dark matter from the CRESST-III experiment, in 15th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2017), Sudbury, ON, Canada, 24–28 July 2017 [arXiv:1711.07692] [INSPIRE].
  66. [66]
    G. Gerbier et al., NEWS: a new spherical gas detector for very low mass WIMP detection, arXiv:1401.7902 [INSPIRE].
  67. [67]
    NEWS-G collaboration webpage,
  68. [68]
    PandaX-II collaboration, Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  69. [69]
    SuperCDMS collaboration, New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
  70. [70]
    SuperCDMS collaboration, Projected sensitivity of the SuperCDMS SNOLAB experiment, Phys. Rev. D 95 (2017) 082002 [arXiv:1610.00006] [INSPIRE].
  71. [71]
    NEWS-G collaboration, First results from the NEWS-G direct dark matter search experiment at the LSM, Astropart. Phys. 97 (2018) 54 [arXiv:1706.04934] [INSPIRE].
  72. [72]
    DarkSide collaboration, Low-mass dark matter search with the DarkSide-50 experiment, Phys. Rev. Lett. 121 (2018) 081307 [arXiv:1802.06994] [INSPIRE].
  73. [73]
    LZ collaboration, LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].
  74. [74]
    LUX, LZ collaboration, The present and future of searching for dark matter with LUX and LZ, PoS(ICHEP2016)220 (2016) [arXiv:1611.05525] [INSPIRE].
  75. [75]
    Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  76. [76]
    CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].
  77. [77]
    G. Bélanger, F. Boudjema and A. Pukhov, MicrOMEGAs: a code for the calculation of dark matter properties in generic models of particle interaction, in The Dark Secrets of the Terascale: proceedings, TASI 2011, Boulder, CO, U.S.A., 6 June–11 July 2011, World Scientific, Singapore (2013), pg. 739 [arXiv:1402.0787] [INSPIRE].
  78. [78]
    M. Drees, F. Hajkarim and E.R. Schmitz, The effects of QCD equation of state on the relic density of WIMP dark matter, JCAP 06 (2015) 025 [arXiv:1503.03513] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  80. [80]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and γ ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  81. [81]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  82. [82]
    S. Tulin, H.-B. Yu and K.M. Zurek, Resonant dark forces and small scale structure, Phys. Rev. Lett. 110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Direct detection portals for self-interacting dark matter, Phys. Rev. D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].ADSGoogle Scholar
  85. [85]
    K. Kainulainen, K. Tuominen and V. Vaskonen, Self-interacting dark matter and cosmology of a light scalar mediator, Phys. Rev. D 93 (2016) 015016 [Erratum ibid. D 95 (2017) 079901] [arXiv:1507.04931] [INSPIRE].
  86. [86]
    F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP 08 (2017) 003 [arXiv:1704.02149] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev. D 96 (2017) 115010 [arXiv:1706.07433] [INSPIRE].ADSGoogle Scholar
  88. [88]
    PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  89. [89]
    Z. Liu, Y. Su, Y.-L. Sming Tsai, B. Yu and Q. Yuan, A combined analysis of PandaX, LUX and XENON1T experiments within the framework of dark matter effective theory, JHEP 11 (2017) 024 [arXiv:1708.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A.D. Dolgov, Neutrinos in cosmology, Phys. Rept. 370 (2002) 333 [hep-ph/0202122] [INSPIRE].
  91. [91]
    M. Ibe, A. Kamada, S. Kobayashi and W. Nakano, Composite asymmetric dark matter with a dark photon portal, JHEP 11 (2018) 203 [arXiv:1805.06876] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  93. [93]
    J. Berger, K. Jedamzik and D.G.E. Walker, Cosmological constraints on decoupled dark photons and dark Higgs, JCAP 11 (2016) 032 [arXiv:1605.07195] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays, JCAP 11 (2018) 032 [arXiv:1808.09324] [INSPIRE].
  95. [95]
    A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].ADSGoogle Scholar
  96. [96]
    W. Hu and J. Silk, Thermalization and spectral distortions of the cosmic background radiation, Phys. Rev. D 48 (1993) 485 [INSPIRE].ADSGoogle Scholar
  97. [97]
    E. Masso and R. Toldra, New constraints on a light spinless particle coupled to photons, Phys. Rev. D 55 (1997) 7967 [hep-ph/9702275] [INSPIRE].
  98. [98]
    Kamiokande-II collaboration, Observation of a neutrino burst from the supernova SN 1987A, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE].
  99. [99]
    J.H. Chang, R. Essig and S.D. McDermott, Revisiting supernova 1987A constraints on dark photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].ADSzbMATHGoogle Scholar
  100. [100]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion and an axion-like particle, JHEP 09 (2018) 051 [arXiv:1803.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    C. Mahoney, A.K. Leibovich and A.R. Zentner, Updated constraints on self-interacting dark matter from supernova 1987A, Phys. Rev. D 96 (2017) 043018 [arXiv:1706.08871] [INSPIRE].ADSGoogle Scholar
  102. [102]
    T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A. Payez and A. Ringwald, Probing axions with the neutrino signal from the next galactic supernova, Phys. Rev. D 94 (2016) 085012 [arXiv:1605.08780] [INSPIRE].ADSGoogle Scholar
  103. [103]
    H. Tu and K.-W. Ng, Supernovae and Weinbergs Higgs portal dark radiation and dark matter, JHEP 07 (2017) 108 [arXiv:1706.08340] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  104. [104]
    A. Sung, H. Tu and M.-R. Wu, New constraint from supernova explosions on light particles beyond the Standard Model, Phys. Rev. D 99 (2019) 121305 [arXiv:1903.07923] [INSPIRE].ADSGoogle Scholar
  105. [105]
    D.H. Weinberg, J.S. Bullock, F. Governato, R. Kuzio de Naray and A.H.G. Peter, Cold dark matter: controversies on small scales, Proc. Nat. Acad. Sci. 112 (2015) 12249 [arXiv:1306.0913] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  107. [107]
    CLEO collaboration, Search for very light CP-odd Higgs boson in radiative decays of ϒ(1S), Phys. Rev. Lett. 101 (2008) 151802 [arXiv:0807.1427] [INSPIRE].
  108. [108]
    BaBar collaboration, Search for di-muon decays of a low-mass Higgs boson in radiative decays of the ϒ(1S), Phys. Rev. D 87 (2013) 031102 [Erratum ibid. D 87 (2013) 059903] [arXiv:1210.0287] [INSPIRE].
  109. [109]
    BaBar collaboration, Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of ϒ(1S), Phys. Rev. D 88 (2013) 071102 [arXiv:1210.5669] [INSPIRE].
  110. [110]
    Belle collaboration, Measurement of the differential branching fraction and forward-backword asymmetry for BK (*) + , Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].
  111. [111]
    Belle collaboration, Search for \( B\to {h}^{\left(\ast \right)}\nu \overline{\nu} \) decays at Belle, Phys. Rev. Lett. 99 (2007) 221802 [arXiv:0707.0138] [INSPIRE].
  112. [112]
    LHCb collaboration, Differential branching fraction and angular analysis of the B +K + μ + μ decay, JHEP 02 (2013) 105 [arXiv:1209.4284] [INSPIRE].
  113. [113]
    LHCb collaboration, Search for hidden-sector bosons in B 0K *0 μ + μ decays, Phys. Rev. Lett. 115 (2015) 161802 [arXiv:1508.04094] [INSPIRE].
  114. [114]
    LHCb collaboration, Search for long-lived scalar particles in B +K + χ(μ + μ ) decays, Phys. Rev. D 95 (2017) 071101 [arXiv:1612.07818] [INSPIRE].
  115. [115]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
  116. [116]
    E. Manoni, Studies of missing energy decays of B meson at Belle II, presented at EPS HEP 2017, Venice, Italy, July 2017.Google Scholar
  117. [117]
    BaBar collaboration, Search for long-lived particles in e + e collisions, Phys. Rev. Lett. 114 (2015) 171801 [arXiv:1502.02580] [INSPIRE].
  118. [118]
    BaBar collaboration, Direct CP, lepton flavor and isospin asymmetries in the decays BK (*) + , Phys. Rev. Lett. 102(2009) 091803 [arXiv:0807.4119] [INSPIRE].
  119. [119]
    BaBar collaboration, Search for the rare decay \( B\to K\nu \overline{\nu} \), Phys. Rev. D 82 (2010) 112002 [arXiv:1009.1529] [INSPIRE].
  120. [120]
    BaBar collaboration, Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
  121. [121]
    J. Albrecht, F. Bernlochner, M. Kenzie, S. Reichert, D. Straub and A. Tully, Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb, arXiv:1709.10308 [INSPIRE].
  122. [122]
    NA48/2 collaboration, New measurement of the K ±π ± μ + μ decay, Phys. Lett. B 697 (2011) 107 [arXiv:1011.4817] [INSPIRE].
  123. [123]
    KTEV collaboration, Search for the decay K Lπ 0 μ + μ , Phys. Rev. Lett. 84 (2000) 5279 [hep-ex/0001006] [INSPIRE].
  124. [124]
    KTeV collaboration, Search for the rare decay K Lπ 0 e + e , Phys. Rev. Lett. 93 (2004) 021805 [hep-ex/0309072] [INSPIRE].
  125. [125]
    BNL-E949 collaboration, Study of the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region 140 < P π < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].
  126. [126]
    S. Martellotti, The NA62 experiment at CERN, in Proceedings, 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2015), Vail, CO, U.S.A., 19–24 May 2015 [arXiv:1510.00172] [INSPIRE].
  127. [127]
    NA62 collaboration, Results and perspectives from the NA62 experiment at CERN, Nuovo Cim. C 39 (2016) 322 [INSPIRE].
  128. [128]
    CHARM collaboration, Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett. B 157 (1985) 458 [INSPIRE].
  129. [129]
    F. Bezrukov and D. Gorbunov, Light inflaton hunters guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  130. [130]
    E391a collaboration, Experimental study of the decay \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \), Phys. Rev. D 81 (2010) 072004 [arXiv:0911.4789] [INSPIRE].
  131. [131]
    S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    KOTO collaboration, Present status of the search for the \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \) decay with the KOTO detector at J-PARC, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2017), Fermilab, Batavia, IL, U.S.A., 31 July–4 August 2017 [arXiv:1710.01412] [INSPIRE].
  133. [133]
    CMS collaboration, Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 10 (2017) 076 [arXiv:1701.02032] [INSPIRE].
  134. [134]
    ATLAS collaboration, Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, JHEP 06 (2018) 166 [arXiv:1802.03388] [INSPIRE].
  135. [135]
    J.D. Clarke, Constraining portals with displaced Higgs decay searches at the LHC, JHEP 10 (2015) 061 [arXiv:1505.00063] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision analysis updates 2014, Phys. Rev. D 90 (2014) 095009 [arXiv:1407.8236] [INSPIRE].ADSGoogle Scholar
  137. [137]
    CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July–6 August 2013 [arXiv:1307.7135] [INSPIRE].
  138. [138]
    P. Bechtle, S. Heinemeyer, O. St al, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [arXiv:1403.1582] [INSPIRE].
  139. [139]
    L3 collaboration, Search for neutral Higgs boson production through the process e + e Z * H 0, Phys. Lett. B 385 (1996) 454 [INSPIRE].
  140. [140]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  141. [141]
    M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators, JHEP 03 (2015) 171 [Erratum ibid. 07 (2015) 103] [arXiv:1412.5174] [INSPIRE].
  142. [142]
    A. Ali, E. Lunghi, C. Greub and G. Hiller, Improved model independent analysis of semileptonic and radiative rare B decays, Phys. Rev. D 66 (2002) 034002 [hep-ph/0112300] [INSPIRE].
  143. [143]
    W.J. Marciano and Z. Parsa, Rare kaon decays withmissing energy”, Phys. Rev. D 53 (1996) R1 [INSPIRE].ADSGoogle Scholar
  144. [144]
    ATLAS collaboration, Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2014) 088 [arXiv:1409.0746] [INSPIRE].
  145. [145]
    ALEPH collaboration, Search for a nonminimal Higgs boson produced in the reaction e + e hZ *, Phys. Lett. B 313 (1993) 312 [INSPIRE].
  146. [146]
    OPAL collaboration, Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J. C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].
  147. [147]
    CMS collaboration, Measurements of inclusive and differential Z boson production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SMP-15-011, CERN, Geneva, Switzerland (2015).
  148. [148]
    D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: the MCMC hammer, Publ. Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].
  149. [149]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    K. Fujii et al., Physics case for the 250 GeV stage of the International Linear Collider, arXiv:1710.07621 [INSPIRE].
  151. [151]
    M. Ahmad et al., CEPC-SPPC preliminary conceptual design report. 1. Physics and detector, IHEP-CEPC-DR-2015-01, (2015) [IHEP-TH-2015-01] [IHEP-EP-2015-01] [INSPIRE].
  152. [152]
    D. d’Enterria, Physics case of FCC-ee, Frascati Phys. Ser. 61 (2016) 17 [arXiv:1601.06640] [INSPIRE].Google Scholar
  153. [153]
    C. Boehm, M.J. Dolan and C. McCabe, A lower bound on the mass of cold thermal dark matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  154. [154]
    P. Gondolo, J. Hisano and K. Kadota, The effect of quark interactions on dark matter kinetic decoupling and the mass of the smallest dark halos, Phys. Rev. D 86 (2012) 083523 [arXiv:1205.1914] [INSPIRE].ADSGoogle Scholar
  155. [155]
    T. Binder, L. Covi, A. Kamada, H. Murayama, T. Takahashi and N. Yoshida, Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term, JCAP 11 (2016) 043 [arXiv:1602.07624] [INSPIRE].ADSCrossRefGoogle Scholar
  156. [156]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  157. [157]
    T. Bhattacharya et al., QCD phase transition with chiral quarks and physical quark masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Shigeki Matsumoto
    • 1
  • Yue-Lin Sming Tsai
    • 2
    • 3
    Email author
  • Po-Yan Tseng
    • 1
  1. 1.Kavli IPMU (WPI), UTIASUniversity of TokyoKashiwaJapan
  2. 2.Institute of PhysicsAcademia SinicaNangangTaiwan
  3. 3.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina

Personalised recommendations