Vector SIMP dark matter with approximate custodial symmetry

  • Soo-Min Choi
  • Hyun Min LeeEmail author
  • Yann Mambrini
  • Mathias Pierre
Open Access
Regular Article - Theoretical Physics


We consider a novel scenario for Vector Strongly Interacting Massive Particle (VSIMP) dark matter with local SU(2)X × U(1)Z symmetry in the dark sector. Similarly to the Standard Model (SM), after the dark symmetry is broken spontaneously by the VEVs of dark Higgs fields, the approximate custodial symmetry determines comparable but split masses for SU(2)X gauge bosons. In this model, we show that the U(1)Z -charged gauge boson of SU(2)X (X±) becomes a natural candidate for SIMP dark matter, annihilating through 3 → 2 or forbidden 2 → 2 annihilations due to gauge self-interactions. On the other hand, the U(1)Z -neutral gauge boson of SU(2)X achieves the kinetic equilibrium of dark matter through a gauge kinetic mixing between U(1)Z and SM hypercharge. We present the parameter space for the correct relic density in our model and discuss in detail the current constraints and projections from colliders and direct detection experiments.


Beyond Standard Model Cosmology of Theories beyond the SM Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  3. [3]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  4. [4]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  5. [5]
    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  6. [6]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. 161B (1985) 136 [INSPIRE].
  7. [7]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  8. [8]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
  9. [9]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The New minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].
  10. [10]
    H. Han and S. Zheng, New Constraints on Higgs-portal Scalar Dark Matter, JHEP 12 (2015) 044 [arXiv:1509.01765] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Arcadi, C. Gross, O. Lebedev, S. Pokorski and T. Toma, Evading Direct Dark Matter Detection in Higgs Portal Models, Phys. Lett. B 769 (2017) 129 [arXiv:1611.09675] [INSPIRE].
  12. [12]
    J.A. Casas, D.G. Cerdeño, J.M. Moreno and J. Quilis, Reopening the Higgs portal for single scalar dark matter, JHEP 05 (2017) 036 [arXiv:1701.08134] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].
  14. [14]
    A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct Detection of Higgs-Portal Dark Matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].
  15. [15]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].
  16. [16]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].
  17. [17]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [Erratum ibid. D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
  18. [18]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs Portal Vector Dark Matter: Revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Arcadi, A. Djouadi and M. Raidal, Dark Matter through the Higgs portal, arXiv:1903.03616 [INSPIRE].
  20. [20]
    J. Ellis, A. Fowlie, L. Marzola and M. Raidal, Statistical Analyses of Higgs- and Z-Portal Dark Matter Models, Phys. Rev. D 97 (2018) 115014 [arXiv:1711.09912] [INSPIRE].
  21. [21]
    G. Arcadi, Y. Mambrini and F. Richard, Z-portal dark matter, JCAP 03 (2015) 018 [arXiv:1411.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Kearney, N. Orlofsky and A. Pierce, Z boson mediated dark matter beyond the effective theory, Phys. Rev. D 95 (2017) 035020 [arXiv:1611.05048] [INSPIRE].
  23. [23]
    M. Escudero, A. Berlin, D. Hooper and M.-X. Lin, Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models, JCAP 12 (2016) 029 [arXiv:1609.09079] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].
  25. [25]
    C. Gross, O. Lebedev and Y. Mambrini, Non-Abelian gauge fields as dark matter, JHEP 08 (2015) 158 [arXiv:1505.07480] [INSPIRE].CrossRefzbMATHGoogle Scholar
  26. [26]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].
  27. [27]
    O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z , Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].
  28. [28]
    G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].
  29. [29]
    GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].
  30. [30]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    X. Chu, Y. Mambrini, J. Quevillon and B. Zaldivar, Thermal and non-thermal production of dark matter via Z -portal(s), JCAP 01 (2014) 034 [arXiv:1306.4677] [INSPIRE].
  33. [33]
    A. Biswas, D. Borah and A. Dasgupta, UV complete framework of freeze-in massive particle dark matter, Phys. Rev. D 99 (2019) 015033 [arXiv:1805.06903] [INSPIRE].
  34. [34]
    Y. Mambrini, K.A. Olive, J. Quevillon and B. Zaldivar, Gauge Coupling Unification and Nonequilibrium Thermal Dark Matter, Phys. Rev. Lett. 110 (2013) 241306 [arXiv:1302.4438] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Y. Mambrini, N. Nagata, K.A. Olive, J. Quevillon and J. Zheng, Dark matter and gauge coupling unification in nonsupersymmetric SO(10) grand unified models, Phys. Rev. D 91 (2015) 095010 [arXiv:1502.06929] [INSPIRE].
  36. [36]
    Y. Mambrini, N. Nagata, K.A. Olive and J. Zheng, Vacuum Stability and Radiative Electroweak Symmetry Breaking in an SO(10) Dark Matter Model, Phys. Rev. D 93 (2016) 111703 [arXiv:1602.05583] [INSPIRE].
  37. [37]
    G. Bhattacharyya, M. Dutra, Y. Mambrini and M. Pierre, Freezing-in dark matter through a heavy invisible Z , Phys. Rev. D 98 (2018) 035038 [arXiv:1806.00016] [INSPIRE].
  38. [38]
    N. Bernal, M. Dutra, Y. Mambrini, K. Olive, M. Peloso and M. Pierre, Spin-2 Portal Dark Matter, Phys. Rev. D 97 (2018) 115020 [arXiv:1803.01866] [INSPIRE].
  39. [39]
    K.-Y. Choi and H.M. Lee, Axino abundances in high-scale supersymmetry, Phys. Dark Univ. 22 (2018) 202 [arXiv:1810.00293] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    S.-M. Choi, Y.-J. Kang, H.M. Lee and K. Yamashita, Unitary inflaton as decaying dark matter, JHEP 05 (2019) 060 [arXiv:1902.03781] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    K. Benakli, Y. Chen, E. Dudas and Y. Mambrini, Minimal model of gravitino dark matter, Phys. Rev. D 95 (2017) 095002 [arXiv:1701.06574] [INSPIRE].
  42. [42]
    E. Dudas, Y. Mambrini and K. Olive, Case for an EeV Gravitino, Phys. Rev. Lett. 119 (2017) 051801 [arXiv:1704.03008] [INSPIRE].
  43. [43]
    E. Dudas, T. Gherghetta, Y. Mambrini and K.A. Olive, Inflation and High-Scale Supersymmetry with an EeV Gravitino, Phys. Rev. D 96 (2017) 115032 [arXiv:1710.07341] [INSPIRE].
  44. [44]
    E. Dudas, T. Gherghetta, K. Kaneta, Y. Mambrini and K.A. Olive, Gravitino decay in high scale supersymmetry with R -parity violation, Phys. Rev. D 98 (2018) 015030 [arXiv:1805.07342] [INSPIRE].
  45. [45]
    D. Chowdhury, E. Dudas, M. Dutra and Y. Mambrini, Moduli Portal Dark Matter, Phys. Rev. D 99 (2019) 095028 [arXiv:1811.01947] [INSPIRE].
  46. [46]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
  48. [48]
    H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z -portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].
  49. [49]
    Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].
  50. [50]
    S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].
  51. [51]
    S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04 (2017) 154 [arXiv:1702.07860] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].
  53. [53]
    S.-M. Choi, Y.-J. Kang and H.M. Lee, On thermal production of self-interacting dark matter, JHEP 12 (2016) 099 [arXiv:1610.04748] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP Dark Matter from the Spontaneous Breaking of a Global Group, JCAP 04 (2015) 012 [arXiv:1501.01973] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S.-M. Choi and H.M. Lee, Resonant SIMP dark matter, Phys. Lett. B 758 (2016) 47 [arXiv:1601.03566] [INSPIRE].
  57. [57]
    A. Berlin, N. Blinov, S. Gori, P. Schuster and N. Toro, Cosmology and Accelerator Tests of Strongly Interacting Dark Matter, Phys. Rev. D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].
  58. [58]
    S.-M. Choi, H.M. Lee, P. Ko and A. Natale, Resolving phenomenological problems with strongly-interacting-massive-particle models with dark vector resonances, Phys. Rev. D 98 (2018) 015034 [arXiv:1801.07726] [INSPIRE].
  59. [59]
    Y. Hochberg, E. Kuflik and H. Murayama, Twin Higgs model with strongly interacting massive particle dark matter, Phys. Rev. D 99 (2019) 015005 [arXiv:1805.09345] [INSPIRE].
  60. [60]
    Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama and K. Schutz, Strongly interacting massive particles through the axion portal, Phys. Rev. D 98 (2018) 115031 [arXiv:1806.10139] [INSPIRE].
  61. [61]
    S.-M. Choi et al., Vector SIMP dark matter, JHEP 10 (2017) 162 [arXiv:1707.01434] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
  63. [63]
    W.J.G. de Blok, The Core-Cusp Problem, Adv. Astron. 2010 (2010) 789293 [arXiv:0910.3538] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D.H. Weinberg, J.S. Bullock, F. Governato, R. Kuzio de Naray and A.H.G. Peter, Cold dark matter: controversies on small scales, Proc. Nat. Acad. Sci. 112 (2015) 12249 [arXiv:1306.0913] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Rocha et al., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E. Del Nobile, M. Kaplinghat and H.-B. Yu, Direct Detection Signatures of Self-Interacting Dark Matter with a Light Mediator, JCAP 10 (2015) 055 [arXiv:1507.04007] [INSPIRE].CrossRefGoogle Scholar
  68. [68]
    S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    F. Elahi and S. Khatibi, Multi-Component Dark Matter in a Non-Abelian Dark Sector, arXiv:1902.04384 [INSPIRE].
  70. [70]
    P. Ko and Y. Tang, Residual Non-Abelian Dark Matter and Dark Radiation, Phys. Lett. B 768 (2017) 12 [arXiv:1609.02307] [INSPIRE].
  71. [71]
    R. Massey et al., The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc. 449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer and S. Sarkar, On the interpretation of dark matter self-interactions in Abell 3827, Mon. Not. Roy. Astron. Soc. 452 (2015) L54 [arXiv:1504.06576] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Massey et al., Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter, Mon. Not. Roy. Astron. Soc. 477 (2018) 669 [arXiv:1708.04245] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
  75. [75]
    D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].
  76. [76]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].
  77. [77]
    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
  78. [78]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  79. [79]
    BaBar collaboration, Search for Invisible Decays of a Dark Photon Produced in e + e Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
  80. [80]
    Belle-II collaboration, The Belle II Physics Book, arXiv:1808.10567 [INSPIRE].
  81. [81]
    R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark Matter with Low-Energy e + e Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    BaBar collaboration, Search for a Dark Photon in e + e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  83. [83]
    XENON10 collaboration, A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].
  84. [84]
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].
  85. [85]
    R. Essig, T. Volansky and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].
  86. [86]
    T.-T. Yu, Direct Detection of sub-GeV Dark Matter, talk at Light Dark World International Forum 2018, KAIST, 17-21 December 2018.Google Scholar
  87. [87]
    SENSEI collaboration, SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run, Phys. Rev. Lett. 121 (2018) 061803 [arXiv:1804.00088] [INSPIRE].
  88. [88]
    H.E. Logan, TASI 2013 lectures on Higgs physics within and beyond the Standard Model, arXiv:1406.1786 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Soo-Min Choi
    • 1
  • Hyun Min Lee
    • 1
    • 2
    Email author
  • Yann Mambrini
    • 3
  • Mathias Pierre
    • 4
    • 5
  1. 1.Department of PhysicsChung-Ang UniversitySeoulKorea
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  3. 3.Laboratoire de Physique Théorique (UMR8627), CNRSUniv. Paris-Sud, Université Paris-SaclayOrsayFrance
  4. 4.Instituto de Física Teórica (IFT) UAM-CSICMadridSpain
  5. 5.Departamento de Física Teórica, Universidad Autónoma de Madrid (UAM)MadridSpain

Personalised recommendations