Skip to main content

Same-sign WW scattering in the HEFT: discoverability vs. EFT validity

A preprint version of the article is available at arXiv.

Abstract

Vector boson scatterings are fundamental processes to shed light on the nature of the electroweak symmetry breaking mechanism. Deviations from the Standard Model predictions on the corresponding observables can be interpreted in terms of effective field theories, that however undergo consistency conditions. In this paper, the same-sign WW scattering is considered within the HEFT context and the correct usage of the effective field theory approach is discussed. Regions of the parameters space are identified where a signal of new physics could be measured at HL-LHC with a significance of more than 5σ and the effective field theory description is consistently adopted. These results are then translated into bounds on the ξ parameter in the composite Higgs scenario. The discussion on the agreement with previous literature and the comparison with the equivalent analysis in the SMEFT case are also included.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].

    ADS  Article  Google Scholar 

  4. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  5. F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys.A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].

  6. B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev.D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].

    ADS  Google Scholar 

  7. R. Contino et al., Strong double Higgs production at the LHC, JHEP05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    ADS  Article  Google Scholar 

  8. R. Alonso et al., The effective chiral Lagrangian for a light dynamicalHiggs particle”, Phys. Lett.B 722 (2013) 330 [Erratum ibid.B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  9. R. Alonso et al., Flavor with a light dynamicalHiggs particle”, Phys. Rev.D 87 (2013) 055019 [arXiv:1212.3307] [INSPIRE].

    ADS  Google Scholar 

  10. G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral lagrangian with a light Higgs at NLO, Nucl. Phys.B 880 (2014) 552 [Erratum ibid.B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].

  11. I. Brivio et al., Disentangling a dynamical Higgs, JHEP03 (2014) 024 [arXiv:1311.1823] [INSPIRE].

    ADS  Article  Google Scholar 

  12. I. Brivio et al., Higgs ultraviolet softening, JHEP12 (2014) 004 [arXiv:1405.5412] [INSPIRE].

    ADS  Article  Google Scholar 

  13. M.B. Gavela et al., CP violation with a dynamical Higgs, JHEP10 (2014) 044 [arXiv:1406.6367] [INSPIRE].

    ADS  Article  Google Scholar 

  14. M.B. Gavela, K. Kanshin, P.A.N. Machado and S. Saa, On the renormalization of the electroweak chiral Lagrangian with a Higgs, JHEP03 (2015) 043 [arXiv:1409.1571] [INSPIRE].

    ADS  Article  Google Scholar 

  15. O.J.P. Éboli and M.C. Gonzalez-Garcia, Classifying the bosonic quartic couplings, Phys. Rev.D 93 (2016) 093013 [arXiv:1604.03555] [INSPIRE].

    ADS  Google Scholar 

  16. I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J.C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].

    ADS  Article  Google Scholar 

  17. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].

  18. L. Merlo, S. Saa and M. Sacristán-Barbero, Baryon non-invariant couplings in Higgs effective field theory, Eur. Phys. J.C 77 (2017) 185 [arXiv:1612.04832] [INSPIRE].

    ADS  Article  Google Scholar 

  19. G. Buchalla et al., Complete one-loop renormalization of the Higgs-electroweak chiral lagrangian, Nucl. Phys.B 928 (2018) 93 [arXiv:1710.06412] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. R. Alonso, K. Kanshin and S. Saa, Renormalization group evolution of Higgs effective field theory, Phys. Rev.D 97 (2018) 035010 [arXiv:1710.06848] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett.136B (1984) 183 [INSPIRE].

    ADS  Article  Google Scholar 

  22. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett.136B (1984) 187 [INSPIRE].

    ADS  Article  Google Scholar 

  23. T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys.B 243 (1984) 125 [INSPIRE].

    ADS  Google Scholar 

  24. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

  25. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    ADS  Article  Google Scholar 

  26. R. Alonso et al., Sigma decomposition, JHEP12 (2014) 034 [arXiv:1409.1589] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  27. I.M. Hierro, L. Merlo and S. Rigolin, Sigma decomposition: the CP-odd lagrangian, JHEP04 (2016) 016 [arXiv:1510.07899] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. F. Feruglio et al., The minimal linear σ-model for the Goldstone Higgs, JHEP06 (2016) 038 [arXiv:1603.05668] [INSPIRE].

    ADS  Article  Google Scholar 

  29. M.B. Gavela, K. Kanshin, P.A.N. Machado and S. Saa, The linear-non-linear frontier for the Goldstone Higgs, Eur. Phys. J.C 76 (2016) 690 [arXiv:1610.08083] [INSPIRE].

    ADS  Article  Google Scholar 

  30. L. Merlo, F. Pobbe and S. Rigolin, The minimal axion minimal linear σ model, Eur. Phys. J.C 78 (2018) 415 [arXiv:1710.10500] [INSPIRE].

    ADS  Article  Google Scholar 

  31. J. Alonso-González et al., Testable axion-like particles in the minimal linear σ model, arXiv:1807.08643 [INSPIRE].

  32. E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett.A 8 (1993) 275 [INSPIRE].

  33. W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett.100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    ADS  Article  Google Scholar 

  34. P. Hernández-Leon and L. Merlo, Distinguishing a Higgs-like dilaton scenario with a complete bosonic effective field theory basis, Phys. Rev.D 96 (2017) 075008 [arXiv:1703.02064] [INSPIRE].

    ADS  Google Scholar 

  35. T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev.D 22 (1980) 200 [INSPIRE].

    ADS  Google Scholar 

  36. A.C. Longhitano, Heavy Higgs bosons in the Weinberg-Salam model, Phys. Rev.D 22 (1980) 1166 [INSPIRE].

    ADS  Google Scholar 

  37. A.C. Longhitano, Low-energy impact of a heavy Higgs boson sector, Nucl. Phys.B 188 (1981) 118 [INSPIRE].

    ADS  Article  Google Scholar 

  38. B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of general power counting rules in effective field theory, Eur. Phys. J.C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE].

    ADS  Google Scholar 

  39. I. Brivio et al., Non-linear Higgs portal to dark matter, JHEP04 (2016) 141 [arXiv:1511.01099] [INSPIRE].

    ADS  Google Scholar 

  40. I. Brivio et al., ALPs effective field theory and collider signatures, Eur. Phys. J.C 77 (2017) 572 [arXiv:1701.05379] [INSPIRE].

    ADS  Article  Google Scholar 

  41. A. Dobado and M.J. Herrero, Phenomenological Lagrangian approach to the symmetry breaking sector of the standard model, Phys. Lett.B 228 (1989) 495 [INSPIRE].

    ADS  Article  Google Scholar 

  42. A. Dobado and M.J. Herrero, Testing the hypothesis of strongly interacting longitudinal weak bosons in electron-positron collisions at TeV energies, Phys. Lett.B 233 (1989) 505 [INSPIRE].

    ADS  Article  Google Scholar 

  43. A. Dobado, M.J. Herrero and T.N. Truong, Study of the strongly interacting Higgs sector, Phys. Lett.B 235 (1990) 129 [INSPIRE].

    ADS  Article  Google Scholar 

  44. A. Dobado, M.J. Herrero and J. Terron, The role of chiral lagrangians in strongly interacting W (l)W (l) signals at pp supercolliders, Z. Phys.C 50 (1991) 205 [INSPIRE].

    Google Scholar 

  45. A. Dobado et al., Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett.B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].

  46. A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev.D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].

  47. A. Alboteanu, W. Kilian and J. Reuter, Resonances and unitarity in weak boson scattering at the LHC, JHEP11 (2008) 010 [arXiv:0806.4145] [INSPIRE].

    ADS  Article  Google Scholar 

  48. ATLAS collaboration, Evidence for electroweak production of W ±W ±jj in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS Detector,Phys. Rev. Lett.113(2014) 141803 [arXiv:1405.6241] [INSPIRE].

  49. CMS collaboration, Vector boson scattering in a final state with two jets and two same-sign leptons, CMS-PAS-SMP-13-015 (2013).

  50. CMS collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett.114 (2015) 051801\ [arXiv:1410.6315] [INSPIRE].

  51. ATLAS collaboration, Measurement of W ±W ±vector-boson scattering and limits on anomalous quartic gauge couplings with the ATLAS detector, Phys. Rev.D 96 (2017) 012007\ [arXiv:1611.02428] [INSPIRE].

  52. ATLAS collaboration, Measurements of W ±Z production cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev.D 93 (2016) 092004 [arXiv:1603.02151] [INSPIRE].

  53. CMS collaboration, Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 774(2017) 682 [arXiv:1708.02812] [INSPIRE].

  54. CMS collaboration, Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.120 (2018) 081801 [arXiv:1709.05822] [INSPIRE].

  55. W. Kilian, T. Ohl, J. Reuter and M. Sekulla, High-energy vector boson scattering after the Higgs discovery, Phys. Rev.D 91 (2015) 096007 [arXiv:1408.6207] [INSPIRE].

    ADS  Google Scholar 

  56. J. Kalinowski et al., Same-sign WW scattering at the LHC: can we discover BSM effects before discovering new states?, Eur. Phys. J.C 78 (2018) 403 [arXiv:1802.02366] [INSPIRE].

    ADS  Article  Google Scholar 

  57. S. Brass et all., Transversal modes and Higgs bosons in electroweak vector-boson scattering at the LHC, Eur. Phys. J.C 78 (2018) 931 [arXiv:1807.02512] [INSPIRE].

  58. R. Gomez-Ambrosio, Studies of dimension-six EFT effects in vector boson scattering, Eur. Phys. J.C 79 (2019) 389 [arXiv:1809.04189] [INSPIRE].

    ADS  Article  Google Scholar 

  59. D. Espriu and B. Yencho, Longitudinal WW scattering in light of theHiggs bosondiscovery, Phys. Rev.D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].

    ADS  Google Scholar 

  60. D. Espriu, F. Mescia and B. Yencho, Radiative corrections to W LW Lscattering in composite Higgs models, Phys. Rev.D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].

    ADS  Google Scholar 

  61. R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, LightHiggs, yet strong interactions, J. Phys.G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].

    ADS  Article  Google Scholar 

  62. R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W LW Land Z LZ Lscattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP02 (2014) 121\ [arXiv:1311.5993] [INSPIRE].

  63. D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, Phys. Rev.D 90 (2014) 015035 [arXiv:1403.7386] [INSPIRE].

    ADS  Google Scholar 

  64. R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγW LL andγγZ LZ Lfrom the electroweak chiral lagrangian with a light Higgs-like scalar, JHEP07 (2014) 149 [arXiv:1404.2866] [INSPIRE].

    ADS  Article  Google Scholar 

  65. R.L. Delgado et al., Production of vector resonances at the LHC via W Z-scattering: a unitarized EChL analysis, JHEP11 (2017) 098 [arXiv:1707.04580] [INSPIRE].

    ADS  Article  Google Scholar 

  66. A. Ballestrero, G. Bevilacqua, D. Buarque Franzosi and E. Maina, How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels?, JHEP11 (2009) 126 [arXiv:0909.3838] [INSPIRE].

  67. D. Buarque Franzosi and P. Ferrarese, Implications of vector boson scattering unitarity in composite Higgs models, Phys. Rev.D 96 (2017) 055037 [arXiv:1705.02787] [INSPIRE].

    ADS  Google Scholar 

  68. G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys.913 (2016) pp.1 [arXiv:1506.01961] [INSPIRE].

  69. A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys.B 234 (1984) 189 [INSPIRE].

    ADS  Article  Google Scholar 

  70. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  71. C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun.183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  72. A. Alloul et al., FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  73. G. Chaudhary et al., EFT triangles in the same-sign WW scattering process at the HL-LHC and HE-LHC, arXiv:1906.10769.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Merlo.

Additional information

ArXiv ePrint: 1905.03354

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozów, P., Merlo, L., Pokorski, S. et al. Same-sign WW scattering in the HEFT: discoverability vs. EFT validity. J. High Energ. Phys. 2019, 21 (2019). https://doi.org/10.1007/JHEP07(2019)021

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2019)021

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Higgs Physics