Advertisement

Can we observe fuzzballs or firewalls?

  • Bin Guo
  • Shaun Hampton
  • Samir D. Mathur
Open Access
Regular Article - Theoretical Physics

Abstract

In the fuzzball paradigm the information paradox is resolved because the black hole is replaced by an object with no horizon. One may therefore ask if observations can distinguish a traditional hole from a fuzzball. We give arguments for why the fuzzball structure should lie close to the horizon; i.e., it should be a ‘tight’ fuzzball. We find: (a) It is very difficult to reflect quanta off the surface of such a fuzzball, mainly because geodesics starting near the horizon radius cannot escape to infinity unless their starting direction is very close to radial. (b) If infalling particles interact with the emerging radiation before they are engulfed by the horizon, then we say that we have a ‘firewall behavior’. We consider several types of interactions, but find no evidence for firewall behavior in any theory that obeys causality. (c) Photons with wavelengths larger than the black hole radius can be

scattered off the emerging radiation, but a very small fraction of the backscattered photons will be able to escape back to infinity.

Keywords

Black Holes Black Holes in String Theory Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  2. [2]
    S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].
  3. [3]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].
  4. [4]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett. 117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.W. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [INSPIRE].
  9. [9]
    S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.B. Giddings, Nonviolent information transfer from black holes: A field theory parametrization, Phys. Rev. D 88 (2013) 024018 [arXiv:1302.2613] [INSPIRE].
  12. [12]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S.D. Mathur and D. Turton, The flaw in the firewall argument, Nucl. Phys. B 884 (2014) 566 [arXiv:1306.5488] [INSPIRE].
  15. [15]
    H.A. Buchdahl, General Relativistic Fluid Spheres, Phys. Rev. 116 (1959) 1027 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S.D. Mathur, Emission rates, the correspondence principle and the information paradox, Nucl. Phys. B 529 (1998) 295 [hep-th/9706151] [INSPIRE].
  17. [17]
    G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs, Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].
  18. [18]
    V. Cardoso and P. Pani, The observational evidence for horizons: from echoes to precision gravitational-wave physics, arXiv:1707.03021 [INSPIRE].
  19. [19]
    S.D. Mathur, Black Holes and Beyond, Annals Phys. 327 (2012) 2760 [arXiv:1205.0776] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Tyukov, R. Walker and N.P. Warner, Tidal Stresses and Energy Gaps in Microstate Geometries, JHEP 02 (2018) 122 [arXiv:1710.09006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S.D. Mathur, Resolving the black hole causality paradox, arXiv:1703.03042 [INSPIRE].
  22. [22]
    S.D. Mathur, Spacetime has a “thickness”, Int. J. Mod. Phys. D 26 (2017) 1742002 [arXiv:1705.06407] [INSPIRE].
  23. [23]
    D. Marolf, private communication (2013).Google Scholar
  24. [24]
    S.D. Mathur, What prevents gravitational collapse in string theory?, Int. J. Mod. Phys. D 25 (2016) 1644018 [arXiv:1609.05222] [INSPIRE].
  25. [25]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  26. [26]
    I. Bena and N.P. Warner, One ring to rule them all . . . and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.D. Mathur and D. Turton, Oscillating supertubes and neutral rotating black hole microstates, JHEP 04 (2014) 072 [arXiv:1310.1354] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    V. Cardoso, O.J.C. Dias, J.L. Hovdebo and R.C. Myers, Instability of non-supersymmetric smooth geometries, Phys. Rev. D 73 (2006) 064031 [hep-th/0512277] [INSPIRE].
  29. [29]
    B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    B.D. Chowdhury and S.D. Mathur, Pair creation in non-extremal fuzzball geometries, Class. Quant. Grav. 25 (2008) 225021 [arXiv:0806.2309] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B.D. Chowdhury and S.D. Mathur, Non-extremal fuzzballs and ergoregion emission, Class. Quant. Grav. 26 (2009) 035006 [arXiv:0810.2951] [INSPIRE].
  32. [32]
    V. Cardoso, E. Franzin and P. Pani, Is the gravitational-wave ringdown a probe of the event horizon?, Phys. Rev. Lett. 116 (2016) 171101 [Erratum ibid. 117 (2016) 089902] [arXiv:1602.07309] [INSPIRE].
  33. [33]
    K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
  35. [35]
    L. Susskind, String theory and the principles of black hole complementarity, Phys. Rev. Lett. 71 (1993) 2367 [hep-th/9307168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    G. ’t Hooft, The Holographic principle: Opening lecture, Subnucl. Ser. 37 (2001) 72 [hep-th/0003004] [INSPIRE].
  37. [37]
    S.D. Mathur, A model with no firewall, arXiv:1506.04342 [INSPIRE].
  38. [38]
    S.D. Mathur and C.J. Plumberg, Correlations in Hawking radiation and the infall problem, JHEP 09 (2011) 093 [arXiv:1101.4899] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S.D. Mathur, Tunneling into fuzzball states, Gen. Rel. Grav. 42 (2010) 113 [arXiv:0805.3716] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S.D. Mathur, How fast can a black hole release its information?, Int. J. Mod. Phys. D 18 (2009) 2215 [arXiv:0905.4483] [INSPIRE].
  41. [41]
    P. Kraus and S.D. Mathur, Nature abhors a horizon, Int. J. Mod. Phys. D 24 (2015) 1543003 [arXiv:1505.05078] [INSPIRE].
  42. [42]
    I. Bena, D.R. Mayerson, A. Puhm and B. Vercnocke, Tunneling into Microstate Geometries: Quantum Effects Stop Gravitational Collapse, JHEP 07 (2016) 031 [arXiv:1512.05376] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A.J. Amsel, D. Marolf and A. Virmani, Collisions with Black Holes and Deconfined Plasmas, JHEP 04 (2008) 025 [arXiv:0712.2221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Banks and W. Fischler, A Model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].
  45. [45]
    W.G. Unruh, Absorption Cross-Section of Small Black Holes, Phys. Rev. D 14 (1976) 3251 [INSPIRE].
  46. [46]
    D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].
  47. [47]
    S.R. Das, G.W. Gibbons and S.D. Mathur, Universality of low-energy absorption cross-sections for black holes, Phys. Rev. Lett. 78 (1997) 417 [hep-th/9609052] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    V. Cardoso, S. Hopper, C.F.B. Macedo, C. Palenzuela and P. Pani, Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale, Phys. Rev. D 94 (2016) 084031 [arXiv:1608.08637] [INSPIRE].
  49. [49]
    J. Abedi, H. Dykaar and N. Afshordi, Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons, Phys. Rev. D 96 (2017) 082004 [arXiv:1612.00266] [INSPIRE].
  50. [50]
    T. Hertog and J. Hartle, Observational Implications of Fuzzball Formation, arXiv:1704.02123 [INSPIRE].
  51. [51]
    U.-L. Pen and A.E. Broderick, Possible Astrophysical Observables of Quantum Gravity Effects near Black Holes, Mon. Not. Roy. Astron. Soc. 445 (2014) 3370 [arXiv:1312.4017] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations