Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Directed flow from C-odd gluon correlations at small x

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 July 2018
  • Volume 2018, article number 140, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Directed flow from C-odd gluon correlations at small x
Download PDF
  • Daniël Boer1,
  • Tom van Daal2,3,
  • Piet J. Mulders2,3 &
  • …
  • Elena Petreska2,3 
  • 436 Accesses

  • 17 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

It is shown that odd harmonic azimuthal correlations, including the directed flow v1, in forward two-particle production in peripheral proton-nucleus (pA) collisions can arise simply from the radial nuclear profile of a large nucleus. This requires consideration of the C-odd part of the gluonic generalized transverse momentum dependent (GTMD) correlator of nucleons in the nucleus. The gluonic GTMD correlator is the Fourier transform of an off-forward hadronic matrix element containing gluonic field strength tensors that are connected by gauge links. It is parametrized in terms of various gluon GTMD distribution functions (GTMDs). We show (in a gauge invariant way) that for the relevant dipole-type gauge link structure in the small-x limit the GTMD correlator reduces to a generalized Wilson loop correlator. The Wilson loop correlator is parametrized in terms of a single function, implying that in the region of small x there is only one independent dipole-type GTMD, which can have a C-odd part. We show that the odderon Wigner distribution, which is related to this C-odd dipole GTMD by a Fourier transform, generates odd harmonics in the two-particle azimuthal correlations in peripheral pA collisions. We calculate the first odd harmonic v1 for forward production within the color glass condensate framework in the limit of a large number of colors. We find that nonzero odd harmonics are present without breaking the rotational symmetry of the nucleus, arising just from its inhomogeneity in the radial direction. Using a CGC model with a cubic action, we illustrate that percent level v1 can arise from this C-odd mechanism. In contrast, we show that only even harmonics arise in diffractive dijet production in ultra-peripheral pA collisions where this gluon dipole GTMD also appears.

Article PDF

Download to read the full article text

Similar content being viewed by others

Initial correlations of the Glasma energy-momentum tensor

Article Open access 08 January 2019

Anisotropic flow and the valence quark skeleton of hadrons

Article Open access 22 August 2023

Tracing the origin of azimuthal gluon correlations in the color glass condensate

Article Open access 11 January 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. X.-d. Ji, Viewing the proton through ‘color’ filters, Phys. Rev. Lett. 91 (2003) 062001 [hep-ph/0304037] [INSPIRE].

  2. A.V. Belitsky, X.-d. Ji and F. Yuan, Quark imaging in the proton via quantum phase space distributions, Phys. Rev. D 69 (2004) 074014 [hep-ph/0307383] [INSPIRE].

  3. S. Meissner, A. Metz, M. Schlegel and K. Goeke, Generalized parton correlation functions for a spin-0 hadron, JHEP 08 (2008) 038 [arXiv:0805.3165] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Meissner, A. Metz and M. Schlegel, Generalized parton correlation functions for a spin-1/2 hadron, JHEP 08 (2009) 056 [arXiv:0906.5323] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C. Lorcé and B. Pasquini, Structure analysis of the generalized correlator of quark and gluon for a spin-1/2 target, JHEP 09 (2013) 138 [arXiv:1307.4497] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].

  7. D. Boer, P.J. Mulders and F. Pijlman, Universality of T odd effects in single spin and azimuthal asymmetries, Nucl. Phys. B 667 (2003) 201 [hep-ph/0303034] [INSPIRE].

  8. J.C. Collins, D.E. Soper and G.F. Sterman, Relation of Parton Distribution Functions in Drell-Yan Process to Deeply Inelastic Scattering, Phys. Lett. B 126 (1983) 275 [INSPIRE].

    Article  ADS  Google Scholar 

  9. D. Boer and P.J. Mulders, Color gauge invariance in the Drell-Yan process, Nucl. Phys. B 569 (2000) 505 [hep-ph/9906223] [INSPIRE].

  10. J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [INSPIRE].

  11. D. Kharzeev, Y.V. Kovchegov and K. Tuchin, Cronin effect and high p T suppression in pA collisions, Phys. Rev. D 68 (2003) 094013 [hep-ph/0307037] [INSPIRE].

  12. F. Dominguez, B.-W. Xiao and F. Yuan, k t -factorization for Hard Processes in Nuclei, Phys. Rev. Lett. 106 (2011) 022301 [arXiv:1009.2141] [INSPIRE].

  13. F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].

    ADS  Google Scholar 

  14. D. Boer, M.G. Echevarria, P. Mulders and J. Zhou, Single spin asymmetries from a single Wilson loop, Phys. Rev. Lett. 116 (2016) 122001 [arXiv:1511.03485] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Boer, S. Cotogno, T. van Daal, P.J. Mulders, A. Signori and Y.-J. Zhou, Gluon and Wilson loop TMDs for hadrons of spin ≤ 1, JHEP 10 (2016) 013 [arXiv:1607.01654] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].

    Article  ADS  Google Scholar 

  17. ALICE collaboration, Long-range angular correlations on the near and away side in p-Pb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV, Phys. Lett. B 719 (2013) 29 [arXiv:1212.2001] [INSPIRE].

  18. ALICE collaboration, Long-range angular correlations of π, K and p in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Lett. B 726 (2013) 164 [arXiv:1307.3237] [INSPIRE].

  19. ALICE collaboration, Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 90 (2014) 054901 [arXiv:1406.2474] [INSPIRE].

  20. ALICE collaboration, Forward-central two-particle correlations in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Lett. B 753 (2016) 126 [arXiv:1506.08032] [INSPIRE].

  21. ALICE collaboration, Azimuthal anisotropy of heavy-flavour decay electrons in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, arXiv:1805.04367 [INSPIRE].

  22. ATLAS collaboration, Observation of Associated Near-Side and Away-Side Long-Range Correlations in \( \sqrt{s_{NN}}=5.02 \) TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110 (2013) 182302 [arXiv:1212.5198] [INSPIRE].

  23. ATLAS collaboration, Measurement with the ATLAS detector of multi-particle azimuthal correlations in p + Pb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV, Phys. Lett. B 725 (2013) 60 [arXiv:1303.2084] [INSPIRE].

  24. ATLAS collaboration, Measurement of long-range pseudorapidity correlations and azimuthal harmonics in \( \sqrt{s_{NN}}=5.02 \) TeV proton-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 044906 [arXiv:1409.1792] [INSPIRE].

  25. ATLAS collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in \( \sqrt{s}=13 \) and 2.76 TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116 (2016) 172301 [arXiv:1509.04776] [INSPIRE].

  26. ATLAS collaboration, Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at \( \sqrt{s}=5.02 \) and 13 TeV and p + Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV with the ATLAS detector, Phys. Rev. C 96 (2017) 024908 [arXiv:1609.06213] [INSPIRE].

  27. ATLAS collaboration, Measurement of multi-particle azimuthal correlations in pp, p + Pb and low-multiplicity Pb + Pb collisions with the ATLAS detector, Eur. Phys. J. C 77 (2017) 428 [arXiv:1705.04176] [INSPIRE].

  28. ATLAS collaboration, Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p + Pb collisions with the ATLAS detector at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 024904 [arXiv:1708.03559] [INSPIRE].

  29. CMS collaboration, Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC, JHEP 09 (2010) 091 [arXiv:1009.4122] [INSPIRE].

  30. CMS collaboration, Evidence for Collective Multiparticle Correlations in p-Pb Collisions, Phys. Rev. Lett. 115 (2015) 012301 [arXiv:1502.05382] [INSPIRE].

  31. CMS collaboration, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718 (2013) 795 [arXiv:1210.5482] [INSPIRE].

  32. CMS collaboration, Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions, Phys. Lett. B 724 (2013) 213 [arXiv:1305.0609] [INSPIRE].

  33. CMS collaboration, Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions, Phys. Rev. C 92 (2015) 034911 [arXiv:1503.01692] [INSPIRE].

  34. CMS collaboration, Measurement of long-range near-side two-particle angular correlations in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 172302 [arXiv:1510.03068] [INSPIRE].

  35. CMS collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765 (2017) 193 [arXiv:1606.06198] [INSPIRE].

  36. CMS collaboration, Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions, arXiv:1710.07864 [INSPIRE].

  37. CMS collaboration, Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in pp and p + Pb Collisions at the LHC, Phys. Rev. Lett. 120 (2018) 092301 [arXiv:1709.09189] [INSPIRE].

  38. LHCb collaboration, Measurements of long-range near-side angular correlations in \( \sqrt{s_{NN}}=5 \) TeV proton-lead collisions in the forward region, Phys. Lett. B 762 (2016) 473 [arXiv:1512.00439] [INSPIRE].

  39. PHENIX collaboration, A. Adare et al., Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d + Au Collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 111 (2013) 212301 [arXiv:1303.1794] [INSPIRE].

  40. PHENIX collaboration, A. Adare et al., Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central d + Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 114 (2015) 192301 [arXiv:1404.7461] [INSPIRE].

  41. PHENIX collaboration, R. Belmont, PHENIX results on multiparticle correlations in small systems, Nucl. Phys. A 967 (2017) 341 [arXiv:1704.04570] [INSPIRE].

  42. STAR collaboration, L. Adamczyk et al., Effect of event selection on jetlike correlation measurement in d+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Lett. B 743 (2015) 333 [arXiv:1412.8437] [INSPIRE].

  43. STAR collaboration, L. Adamczyk et al., Long-range pseudorapidity dihadron correlations in d+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Lett. B 747 (2015) 265 [arXiv:1502.07652] [INSPIRE].

  44. Y.V. Kovchegov, E. Levin and L.D. McLerran, Large scale rapidity correlations in heavy ion collisions, Phys. Rev. C 63 (2001) 024903 [hep-ph/9912367] [INSPIRE].

  45. D. Teaney and R. Venugopalan, Classical computation of elliptic flow at large transverse momentum, Phys. Lett. B 539 (2002) 53 [hep-ph/0203208] [INSPIRE].

  46. Y.V. Kovchegov and K.L. Tuchin, Elliptic flow from minijet production in heavy ion collisions, Nucl. Phys. A 708 (2002) 413 [hep-ph/0203213] [INSPIRE].

  47. A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys. A 810 (2008) 91 [arXiv:0804.3858] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Gavin, L. McLerran and G. Moschelli, Long Range Correlations and the Soft Ridge in Relativistic Nuclear Collisions, Phys. Rev. C 79 (2009) 051902 [arXiv:0806.4718] [INSPIRE].

    ADS  Google Scholar 

  49. E. Avsar, C. Flensburg, Y. Hatta, J.-Y. Ollitrault and T. Ueda, Eccentricity and elliptic flow in proton-proton collisions from parton evolution, Phys. Lett. B 702 (2011) 394 [arXiv:1009.5643] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi and R. Venugopalan, The Ridge in proton-proton collisions at the LHC, Phys. Lett. B 697 (2011) 21 [arXiv:1009.5295] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Kovner and M. Lublinsky, Angular Correlations in Gluon Production at High Energy, Phys. Rev. D 83 (2011) 034017 [arXiv:1012.3398] [INSPIRE].

    ADS  Google Scholar 

  52. A. Kovner and M. Lublinsky, On Angular Correlations and High Energy Evolution, Phys. Rev. D 84 (2011) 094011 [arXiv:1109.0347] [INSPIRE].

    ADS  Google Scholar 

  53. E. Levin and A.H. Rezaeian, The Ridge from the BFKL evolution and beyond, Phys. Rev. D 84 (2011) 034031 [arXiv:1105.3275] [INSPIRE].

    ADS  Google Scholar 

  54. E. Iancu and D.N. Triantafyllopoulos, Higher-point correlations from the JIMWLK evolution, JHEP 11 (2011) 105 [arXiv:1109.0302] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].

    Article  ADS  Google Scholar 

  56. B. Schenke, P. Tribedy and R. Venugopalan, Event-by-event gluon multiplicity, energy density and eccentricities in ultrarelativistic heavy-ion collisions, Phys. Rev. C 86 (2012) 034908 [arXiv:1206.6805] [INSPIRE].

    ADS  Google Scholar 

  57. K. Dusling and R. Venugopalan, Azimuthal collimation of long range rapidity correlations by strong color fields in high multiplicity hadron-hadron collisions, Phys. Rev. Lett. 108 (2012) 262001 [arXiv:1201.2658] [INSPIRE].

    Article  ADS  Google Scholar 

  58. K. Dusling and R. Venugopalan, Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions, Phys. Rev. D 87 (2013) 094034 [arXiv:1302.7018] [INSPIRE].

    ADS  Google Scholar 

  59. K. Dusling, P. Tribedy and R. Venugopalan, Energy dependence of the ridge in high multiplicity proton-proton collisions, Phys. Rev. D 93 (2016) 014034 [arXiv:1509.04410] [INSPIRE].

    ADS  Google Scholar 

  60. Y.V. Kovchegov and D.E. Wertepny, Two-Gluon Correlations in Heavy-Light Ion Collisions: Energy and Geometry Dependence, IR Divergences and k T -Factorization, Nucl. Phys. A 925 (2014) 254 [arXiv:1310.6701] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Kovner and M. Lublinsky, Angular and long range rapidity correlations in particle production at high energy, Int. J. Mod. Phys. E 22 (2013) 1330001 [arXiv:1211.1928] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Kovner and A.H. Rezaeian, Diphoton production in high-energy p + A collisions, Phys. Rev. D 90 (2014) 014031 [arXiv:1404.5632] [INSPIRE].

    ADS  Google Scholar 

  63. A. Dumitru, L. McLerran and V. Skokov, Azimuthal asymmetries and the emergence of “collectivity” from multi-particle correlations in high-energy pA collisions, Phys. Lett. B 743 (2015) 134 [arXiv:1410.4844] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Kovner and A.H. Rezaeian, Diphoton ridge in p+p and p+A collisions at RHIC and the LHC, Phys. Rev. D 92 (2015) 074045 [arXiv:1508.02412] [INSPIRE].

    ADS  Google Scholar 

  65. B. Schenke, S. Schlichting and R. Venugopalan, Azimuthal anisotropies in p + Pb collisions from classical Yang-Mills dynamics, Phys. Lett. B 747 (2015) 76 [arXiv:1502.01331] [INSPIRE].

    Article  ADS  Google Scholar 

  66. T. Lappi, Azimuthal harmonics of color fields in a high energy nucleus, Phys. Lett. B 744 (2015) 315 [arXiv:1501.05505] [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Lappi, B. Schenke, S. Schlichting and R. Venugopalan, Tracing the origin of azimuthal gluon correlations in the color glass condensate, JHEP 01 (2016) 061 [arXiv:1509.03499] [INSPIRE].

    Article  ADS  Google Scholar 

  68. T. Altinoluk, N. Armesto, G. Beuf and A.H. Rezaeian, Diffractive Dijet Production in Deep Inelastic Scattering and Photon-Hadron Collisions in the Color Glass Condensate, Phys. Lett. B 758 (2016) 373 [arXiv:1511.07452] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. A.H. Rezaeian, Photon-jet ridge at RHIC and the LHC, Phys. Rev. D 93 (2016) 094030 [arXiv:1603.07354] [INSPIRE].

    ADS  Google Scholar 

  70. B. Schenke and S. Schlichting, 3D glasma initial state for relativistic heavy ion collisions, Phys. Rev. C 94 (2016) 044907 [arXiv:1605.07158] [INSPIRE].

    ADS  Google Scholar 

  71. B. Schenke, S. Schlichting, P. Tribedy and R. Venugopalan, Mass ordering of spectra from fragmentation of saturated gluon states in high multiplicity proton-proton collisions, Phys. Rev. Lett. 117 (2016) 162301 [arXiv:1607.02496] [INSPIRE].

    Article  ADS  Google Scholar 

  72. K. Dusling, M. Mace and R. Venugopalan, Multiparticle collectivity from initial state correlations in high energy proton-nucleus collisions, Phys. Rev. Lett. 120 (2018) 042002 [arXiv:1705.00745] [INSPIRE].

    Article  ADS  Google Scholar 

  73. K. Dusling, M. Mace and R. Venugopalan, Parton model description of multiparticle azimuthal correlations in pA collisions, Phys. Rev. D 97 (2018) 016014 [arXiv:1706.06260] [INSPIRE].

    ADS  Google Scholar 

  74. K. Fukushima and Y. Hidaka, General formulae for dipole Wilson line correlators with the Color Glass Condensate, JHEP 11 (2017) 114 [arXiv:1708.03051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. T. Altinoluk, N. Armesto and D.E. Wertepny, Correlations and the ridge in the Color Glass Condensate beyond the glasma graph approximation, JHEP 05 (2018) 207 [arXiv:1804.02910] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Dumitru and A.V. Giannini, Initial state angular asymmetries in high energy p+A collisions: spontaneous breaking of rotational symmetry by a color electric field and C-odd fluctuations, Nucl. Phys. A 933 (2015) 212 [arXiv:1406.5781] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A. Dumitru and V. Skokov, Anisotropy of the semiclassical gluon field of a large nucleus at high energy, Phys. Rev. D 91 (2015) 074006 [arXiv:1411.6630] [INSPIRE].

    ADS  Google Scholar 

  78. A. Kovner, M. Lublinsky and V. Skokov, Exploring correlations in the CGC wave function: odd azimuthal anisotropy, Phys. Rev. D 96 (2017) 016010 [arXiv:1612.07790] [INSPIRE].

    ADS  Google Scholar 

  79. Y.V. Kovchegov and V.V. Skokov, How classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions, Phys. Rev. D 97 (2018) 094021 [arXiv:1802.08166] [INSPIRE].

    ADS  Google Scholar 

  80. Y. Hagiwara, Y. Hatta, B.-W. Xiao and F. Yuan, Elliptic Flow in Small Systems due to Elliptic Gluon Distributions?, Phys. Lett. B 771 (2017) 374 [arXiv:1701.04254] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. E. Iancu and A.H. Rezaeian, Elliptic flow from color-dipole orientation in pp and pA collisions, Phys. Rev. D 95 (2017) 094003 [arXiv:1702.03943] [INSPIRE].

    ADS  Google Scholar 

  82. B.Z. Kopeliovich, H.J. Pirner, A.H. Rezaeian and I. Schmidt, Azimuthal anisotropy of direct photons, Phys. Rev. D 77 (2008) 034011 [arXiv:0711.3010] [INSPIRE].

    ADS  Google Scholar 

  83. B.Z. Kopeliovich, A.H. Rezaeian and I. Schmidt, Azimuthal Asymmetry of Prompt Photons in Nuclear Collisions, Nucl. Phys. A 807 (2008) 61 [arXiv:0712.2829] [INSPIRE].

    Article  ADS  Google Scholar 

  84. B.Z. Kopeliovich, A.H. Rezaeian and I. Schmidt, Azimuthal Asymmetry of pions in pp and pA collisions, Phys. Rev. D 78 (2008) 114009 [arXiv:0809.4327] [INSPIRE].

    ADS  Google Scholar 

  85. Y. Hatta, B.-W. Xiao and F. Yuan, Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering, Phys. Rev. Lett. 116 (2016) 202301 [arXiv:1601.01585] [INSPIRE].

    Article  ADS  Google Scholar 

  86. Y. Hagiwara, Y. Hatta, R. Pasechnik, M. Tasevsky and O. Teryaev, Accessing the gluon Wigner distribution in ultraperipheral pA collisions, Phys. Rev. D 96 (2017) 034009 [arXiv:1706.01765] [INSPIRE].

    ADS  Google Scholar 

  87. C.J. Bomhof, P.J. Mulders and F. Pijlman, The Construction of gauge-links in arbitrary hard processes, Eur. Phys. J. C 47 (2006) 147 [hep-ph/0601171] [INSPIRE].

  88. M.G. Echevarria et al., Proper definition and evolution of generalized transverse momentum dependent distributions, Phys. Lett. B 759 (2016) 336 [arXiv:1602.06953] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  89. A. Signori, Flavor and Evolution Effects in TMD Phenomenology, Ph.D. Thesis, Vrije University, Amsterdam (2016) [INSPIRE].

  90. T. van Daal, Quark and gluon TMD correlators in momentum and coordinate space, in 22nd International Symposium on Spin Physics (SPIN 2016), Urbana, IL, U.S.A., September 25–30, 2016 (2016) [arXiv:1612.06585] [INSPIRE].

  91. P.J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D 63 (2001) 094021 [hep-ph/0009343] [INSPIRE].

  92. S. Meissner, A. Metz and K. Goeke, Relations between generalized and transverse momentum dependent parton distributions, Phys. Rev. D 76 (2007) 034002 [hep-ph/0703176] [INSPIRE].

  93. M. Diehl, Generalized parton distributions, Phys. Rept. 388 (2003) 41 [hep-ph/0307382] [INSPIRE].

  94. M.G.A. Buffing, A. Mukherjee and P.J. Mulders, Generalized Universality of Definite Rank Gluon Transverse Momentum Dependent Correlators, Phys. Rev. D 88 (2013) 054027 [arXiv:1306.5897] [INSPIRE].

    ADS  Google Scholar 

  95. C.J. Bomhof and P.J. Mulders, Non-universality of transverse momentum dependent parton distribution functions, Nucl. Phys. B 795 (2008) 409 [arXiv:0709.1390] [INSPIRE].

    Article  ADS  Google Scholar 

  96. A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, The Color glass condensate and hadron production in the forward region, Nucl. Phys. A 765 (2006) 464 [hep-ph/0506308] [INSPIRE].

  97. A. Dumitru and J. Jalilian-Marian, Forward quark jets from protons shattering the colored glass, Phys. Rev. Lett. 89 (2002) 022301 [hep-ph/0204028] [INSPIRE].

  98. A. Kovner and A.H. Rezaeian, Double parton scattering in the color glass condensate: Hanbury-Brown-Twiss correlations in double inclusive photon production, Phys. Rev. D 95 (2017) 114028 [arXiv:1701.00494] [INSPIRE].

    ADS  Google Scholar 

  99. A. Kovner and A.H. Rezaeian, Multiquark production in p + A collisions: Quantum interference effects, Phys. Rev. D 97 (2018) 074008 [arXiv:1801.04875] [INSPIRE].

    ADS  Google Scholar 

  100. J. Zhou, Elliptic gluon generalized transverse-momentum-dependent distribution inside a large nucleus, Phys. Rev. D 94 (2016) 114017 [arXiv:1611.02397] [INSPIRE].

    ADS  Google Scholar 

  101. B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, The Four jet production at LHC and Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] [INSPIRE].

    ADS  Google Scholar 

  102. M. Diehl, D. Ostermeier and A. Schäfer, Elements of a theory for multiparton interactions in QCD, JHEP 03 (2012) 089 [Erratum ibid. 03 (2016) 001] [arXiv:1111.0910] [INSPIRE].

  103. S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].

  104. F. Gelis and A. Peshier, Probing colored glass via \( q\overline{q} \) photoproduction, Nucl. Phys. A 697 (2002) 879 [hep-ph/0107142] [INSPIRE].

  105. Y.V. Kovchegov, L. Szymanowski and S. Wallon, Perturbative odderon in the dipole model, Phys. Lett. B 586 (2004) 267 [hep-ph/0309281] [INSPIRE].

  106. Y. Hatta, E. Iancu, K. Itakura and L. McLerran, Odderon in the color glass condensate, Nucl. Phys. A 760 (2005) 172 [hep-ph/0501171] [INSPIRE].

  107. S. Jeon and R. Venugopalan, A Classical Odderon in QCD at high energies, Phys. Rev. D 71 (2005) 125003 [hep-ph/0503219] [INSPIRE].

  108. Y.V. Kovchegov and M.D. Sievert, A New Mechanism for Generating a Single Transverse Spin Asymmetry, Phys. Rev. D 86 (2012) 034028 [Erratum ibid. D 86 (2012) 079906] [arXiv:1201.5890] [INSPIRE].

  109. M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Generalized parton distributions from nucleon form-factor data, Eur. Phys. J. C 39 (2005) 1 [hep-ph/0408173] [INSPIRE].

  110. M. Diehl, T. Kasemets and S. Keane, Correlations in double parton distributions: effects of evolution, JHEP 05 (2014) 118 [arXiv:1401.1233] [INSPIRE].

    Article  ADS  Google Scholar 

  111. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

  112. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

  113. J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].

  114. A. Kovner and J.G. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].

  115. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

  116. H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, NL-9747 AG, Groningen, The Netherlands

    Daniël Boer

  2. Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV, Amsterdam, The Netherlands

    Tom van Daal, Piet J. Mulders & Elena Petreska

  3. Nikhef, Science Park 105, NL-1098 XG, Amsterdam, The Netherlands

    Tom van Daal, Piet J. Mulders & Elena Petreska

Authors
  1. Daniël Boer
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tom van Daal
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Piet J. Mulders
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Elena Petreska
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Elena Petreska.

Additional information

ArXiv ePrint: 1805.05219

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boer, D., van Daal, T., Mulders, P.J. et al. Directed flow from C-odd gluon correlations at small x. J. High Energ. Phys. 2018, 140 (2018). https://doi.org/10.1007/JHEP07(2018)140

Download citation

  • Received: 27 May 2018

  • Revised: 29 June 2018

  • Accepted: 13 July 2018

  • Published: 23 July 2018

  • DOI: https://doi.org/10.1007/JHEP07(2018)140

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phenomenological Models
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature