F. Haake, Quantum Signatures of Chaos, Springer-Verlag New York, Inc. (2006).
M. Serbyn and J.E. Moore, Spectral statistics across the many-body localization transition, Phys. Rev. B 93 (2016) 041424 [arXiv:1508.07293].
ADS
Article
Google Scholar
A. Altland and D. Bagrets, Quantum ergodicity in the SYK model, Nucl. Phys. B 930 (2018) 45 [arXiv:1712.05073] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Chan, A. De Luca and J.T. Chalker, Spectral statistics in spatially extended chaotic quantum many-body systems, arXiv:1803.03841 [INSPIRE].
P. Kos, M. Ljubotina and T. Prosen, Many-body quantum chaos: Analytic connection to random matrix theory, Phys. Rev. X 8 (2018) 021062 [arXiv:1712.02665] [INSPIRE].
Article
Google Scholar
Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev Model and Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological States, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].
ADS
Article
Google Scholar
A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
A. Kitaev, A Simple Model of Quantum Holography, talks at KITP (2015) [http://online.kitp.ucsb.edu/online/entangled15/kitaev/] [http://online.kitp.ucsb.edu/online/entangled15/kitaev2/].
A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
ADS
MathSciNet
Google Scholar
A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP 28 (1969) 1200 [http://www.jetp.ac.ru/cgi-bin/dn/e_028_06_1200.pdf].
P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
ADS
Article
Google Scholar
A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].
ADS
Article
Google Scholar
A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, talk given at Fundamental Physics Prize Symposium, Nov. 10, 2014, and Stanford SITP seminars Nov. 11, 2014 and Dec. 18, 2014 [https://www.youtube.com/watch?v=OQ9qN8j7EZI].
N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].
ADS
Article
MATH
Google Scholar
D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Altshuler and B. Shklovskii, Repulsion of energy levels and conductivity of small metal samples, Sov. Phys. JETP 64 (1986) 127 [http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/AltshulerShklovskii.pdf].
L. Erdős and A. Knowles, The Altshuler-Shklovskii Formulas for Random Band Matrices I: the Unimodular Case, Commun. Math. Phys. 333 (2015) 1365.
ADS
MathSciNet
Article
MATH
Google Scholar
A.M. García-García, Y. Jia and J.J.M. Verbaarschot, Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev Model, Phys. Rev. D 97 (2018) 106003 [arXiv:1801.01071] [INSPIRE].
T. Banks, L. Susskind and M.E. Peskin, Difficulties for the Evolution of Pure States Into Mixed States, Nucl. Phys. B 244 (1984) 125.
ADS
MathSciNet
Article
Google Scholar
J. Emerson, E. Livine and S. Lloyd, Convergence conditions for random quantum circuits, Phys. Rev. A 72 (2005) 060302 [quant-ph/0503210].
R. Oliveira, O.C.O. Dahlsten and M.B. Plenio, Efficient Generation of Generic Entanglement, Phys. Rev. Lett. 98 (2007) 130502 [quant-ph/0605126].
J. Emerson, Y.S. Weinstein, M. Saraceno, S. Lloyd and D.G. Cory, Pseudo-random unitary operators for quantum information processing, Science 302 (2003) 2098.
ADS
MathSciNet
Article
MATH
Google Scholar
D. Gross, K. Audenaert and J. Eisert, Evenly distributed unitaries: On the structure of unitary designs, J. Math. Phys. 48 (2007) 052104 [quant-ph/0611002].
L. Arnaud and D. Braun, Efficiency of producing random unitary matrices with quantum circuits, Phys. Rev. A 78 (2008) 062329 [arXiv:0807.0775].
ADS
Article
Google Scholar
A. Harrow and R. Low. Efficient quantum tensor product expanders and k-designs, Lect. Notes Comput. Sci. 5687 (2009) 548 [arXiv:0811.2597].
ADS
MathSciNet
Article
MATH
Google Scholar
A.W. Harrow and R.A. Low, Random quantum circuits are approximate 2-designs, Commun. Math. Phys. 291 (2009) 257 [arXiv:0802.1919].
ADS
MathSciNet
Article
MATH
Google Scholar
W.G. Brown and L. Viola, Convergence rates for arbitrary statistical moments of random quantum circuits, Phys. Rev. Lett. 104 (2010) 250501 [arXiv:0910.0913].
ADS
Article
Google Scholar
W. Brown and O. Fawzi, Scrambling speed of random quantum circuits, arXiv:1210.6644 [INSPIRE].
F. Brandao, A. Harrow and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, Commun. Math. Phys. 346 (2016) 397 [arXiv:1208.0692].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Onorati, O. Buerschaper, M. Kliesch, W. Brown, A.H. Werner and J. Eisert, Mixing properties of stochastic quantum Hamiltonians, Commun. Math. Phys. 355 (2017) 905 [arXiv:1606.01914] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Y. Nakata, C. Hirche, M. Koashi and A. Winter, Efficient Quantum Pseudorandomness with Nearly Time-Independent Hamiltonian Dynamics, Phys. Rev. X 7 (2017) 021006 [arXiv:1609.07021] [INSPIRE].
Article
Google Scholar
L. Banchi, D. Burgarth and M.J. Kastoryano, Driven Quantum Dynamics: Will It Blend?, Phys. Rev. X 7 (2017) 041015 [arXiv:1704.03041] [INSPIRE].
Article
Google Scholar
A. Nahum, S. Vijay and J. Haah, Operator Spreading in Random Unitary Circuits, Phys. Rev. X 8 (2018) 021014 [arXiv:1705.08975] [INSPIRE].
Article
Google Scholar
C. von Keyserlingk, T. Rakovszky, F. Pollmann and S. Sondhi, Operator hydrodynamics, OTOCs and entanglement growth in systems without conservation laws, Phys. Rev. X 8 (2018) 021013 [arXiv:1705.08910] [INSPIRE].
Article
Google Scholar
V. Khemani, A. Vishwanath and D.A. Huse, Operator spreading and the emergence of dissipation in unitary dynamics with conservation laws, arXiv:1710.09835 [INSPIRE].
J. Preskill, Quantum computing and the entanglement frontier, arXiv:1203.5813 [INSPIRE].
C. Neill et al., A blueprint for demonstrating quantum supremacy with superconducting qubits, Science 360 (2018) 195 [arXiv:1709.06678].
ADS
MathSciNet
Article
Google Scholar
A.W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549 (2017) 203.
ADS
Article
Google Scholar
A. Bouland, B. Fefferman, C. Nirkhe, U. Vazirani Quantum Supremacy and the Complexity of Random Circuit Sampling, arXiv:1803.04402.
T. Rakovszky, F. Pollmann and C.W. von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, arXiv:1710.09827 [INSPIRE].
D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121 [arXiv:1610.04903] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Cotler, N. Hunter-Jones, J. Liu and B. Yoshida, Chaos, Complexity and Random Matrices, JHEP 11 (2017) 048 [arXiv:1706.05400] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962) 140 [INSPIRE].
M.L. Mehta, Random matrices, vol. 142, Academic Press (2004).
T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].
J. Flores, M. Horoi, M. Müller and T.H. Seligman, Spectral statistics of the two-body random ensemble revisited, Phys. Rev. E 63 (2001) 026204 [cond-mat/0006144] [INSPIRE].
A. Altland and D. Bagrets, Quantum ergodicity in the SYK model, Nucl. Phys. B 930 (2018) 45 [arXiv:1712.05073] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Erdős and D. Schröder, Phase transition in the density of states of quantum spin glasses, Math. Phys. Anal. Geom. 17 (2014) 441 [arXiv:1407.1552].
MathSciNet
Article
MATH
Google Scholar
E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, articlePhys. Rev. E 55 (1997) 4067 [cond-mat/9608116].
E. Brézin and S. Hikami, Extension of level-spacing universality, Phys. Rev. E 56 (1997) 264 [INSPIRE].
ADS
Google Scholar
K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].
ADS
Article
Google Scholar
A. Gaikwad and R. Sinha, Spectral Form Factor in Non-Gaussian Random Matrix Theories, arXiv:1706.07439 [INSPIRE].
D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].
ADS
Article
MATH
Google Scholar
D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Haake, H.-J. Sommers and J. Weber, Fluctuations and ergodicity of the form factor of quantum propagators and random unitary matrices, J. Phys. A 32 (1999) 6903.
ADS
MathSciNet
MATH
Google Scholar
P. Diaconis and S.N. Evans, Linear Functionals of Eigenvalues of Random Matrices, Trans. Am. Math. Soc. 353 (2001) 2615.
MathSciNet
Article
MATH
Google Scholar
J.P. Keating, N. Linden and H.J. Wells, Random matrices and quantum spin chains, Markov Process. Related Fields 21 (2015) 537 [arXiv:1403.1114].
MathSciNet
Google Scholar
J.P. Keating, N. Linden and H.J. Wells, Spectra and Eigenstates of Spin Chain Hamiltonians, Commun. Math. Phys. 338 (2015) 81 [arXiv:1403.1121].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Pal and D.A. Huse, The many-body localization transition, arXiv:1003.2613.
D.J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B 91 (2015) 081103 [arXiv:1411.0660].
ADS
Article
Google Scholar
K. Agarwal, E. Altman, E. Demler, S. Gopalakrishnan, D.A. Huse and M. Knap, Rare-region effects and dynamics near the many-body localization transition, Annalen Phys. 529 (2017) 1600326 [arXiv:1611.00770].
ADS
MathSciNet
Article
Google Scholar
P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, in progress.
L.L. Ng, Heisenberg Model, Bethe Ansatz and Random Walks, Senior Honors Thesis, Harvard University (1996) [https://services.math.duke.edu/ng/math/papers/senior-thesis.pdf].
M. Karabach, G. Müller, H. Gould and J. Tobochnik, Introduction to the Bethe Ansatz I, Comput. Phys. 11 (1997) 36 [cond-mat/9809162].
J.R.G. Mendonca, Exact eigenspectrum of the symmetric simple exclusion process on the complete, complete bipartite and related graphs, J. Phys. A 46 (2013) 295001 [arXiv:1207.4106].
MathSciNet
MATH
Google Scholar
E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06 (2018) 122 [arXiv:1802.02633] [INSPIRE].
ADS
Article
Google Scholar
J.T. Chalker, I.V. Lerner and R.A. Smith, Random Walks through the Ensemble: Linking Spectral Statistics with Wave-Function Correlations in Disordered Metals, Phys. Rev. Lett. 77 (1996) 554 [INSPIRE].
ADS
Article
Google Scholar