Skip to main content

Lepton-pair production in association with a \( b\overline{b} \) pair and the determination of the W boson mass

A preprint version of the article is available at arXiv.

Abstract

We perform a study of lepton-pair production in association with bottom quarks at the LHC based on the predictions obtained at next-to-leading order in QCD, both at fixed order and matched with a QCD parton shower. We consider a comprehensive set of observables and estimate the associated theoretical uncertainties by studying the dependence on the perturbative QCD scales (renormalisation, factorisation and shower) and by comparing different parton-shower models (Pythia8 and Herwig++) and matching schemes (MC@NLO and POWHEG). Based on these results, we propose a simple procedure to include bottom-quark effects in neutral-current Drell-Yan production, going beyond the standard massless approximation. Focusing on the inclusive lepton-pair transverse-momentum distribution \( {p}_{\perp}^{\ell^{+}\ell -} \), we quantify the impact of such effects on the tuning of the simulation of charged-current Drell-Yan observables and the W-boson mass determination.

References

  1. [1]

    G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    ATLAS collaboration, Measurement of the transverse momentum and ϕ * η distributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].

  3. [3]

    CMS collaboration, Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2017) 096 [arXiv:1606.05864] [INSPIRE].

  4. [4]

    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α 2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].

  5. [5]

    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

  6. [6]

    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].

  7. [7]

    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(α 2 s ), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].

  8. [8]

    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α 2 s ), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

  9. [9]

    T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan production at threshold to third order in QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    T. Ahmed, M.K. Mandal, N. Rana and V. Ravindran, Rapidity distributions in Drell-Yan and Higgs productions at threshold to third order in QCD, Phys. Rev. Lett. 113 (2014) 212003 [arXiv:1404.6504] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    D. Wackeroth and W. Hollik, Electroweak radiative corrections to resonant charged gauge boson production, Phys. Rev. D 55 (1997) 6788 [hep-ph/9606398] [INSPIRE].

  12. [12]

    U. Baur, S. Keller and D. Wackeroth, Electroweak radiative corrections to W boson production in hadronic collisions, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417] [INSPIRE].

  13. [13]

    U. Baur et al., Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [INSPIRE].

  14. [14]

    S. Dittmaier and M. Krämer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

  15. [15]

    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    R. Boughezal, X. Liu and F. Petriello, Phenomenology of the Z-boson plus jet process at NNLO, Phys. Rev. D 94 (2016) 074015 [arXiv:1602.08140] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    A. Gehrmann-De Ridder et al., The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    A. Gehrmann-De Ridder et al., NNLO QCD corrections for Drell-Yan p Z T and ϕ * observables at the LHC, JHEP 11 (2016) 094 [arXiv:1610.01843] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    A. Gehrmann-De Ridder et al., Next-to-next-to-leading-order QCD corrections to the transverse momentum distribution of weak gauge bosons, Phys. Rev. Lett. 120 (2018) 122001 [arXiv:1712.07543] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].

  22. [22]

    C. Balázs and C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].

  23. [23]

    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    S. Catani, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay, JHEP 12 (2015) 047 [arXiv:1507.06937] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    G. Bozzi et al., Transverse-momentum resummation: a perturbative study of Z production at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  26. [26]

    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

  27. [27]

    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  28. [28]

    S. Höche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with parton showers, Phys. Rev. D 91 (2015) 074015 [arXiv:1405.3607] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    A. Karlberg, E. Re and G. Zanderighi, NNLOPS accurate Drell-Yan production, JHEP 09 (2014) 134 [arXiv:1407.2940] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S. Alioli et al., Drell-Yan production at NNLL+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the charged current Drell-Yan process, JHEP 12 (2006) 016 [hep-ph/0609170] [INSPIRE].

  32. [32]

    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP 10 (2007) 109 [arXiv:0710.1722] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    W. Placzek and S. Jadach, Multiphoton radiation in leptonic W boson decays, Eur. Phys. J. C 29 (2003) 325 [hep-ph/0302065] [INSPIRE].

  34. [34]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  35. [35]

    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  36. [36]

    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  38. [38]

    C. Bernaciak and D. Wackeroth, Combining NLO QCD and electroweak radiative corrections to W boson production at hadron colliders in the POWHEG framework, Phys. Rev. D 85 (2012) 093003 [arXiv:1201.4804] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    L. Barze et al., Implementation of electroweak corrections in the POWHEG BOX: single W production, JHEP 04 (2012) 037 [arXiv:1202.0465] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  40. [40]

    L. Barze et al., Neutral current Drell-Yan with combined QCD and electroweak corrections in the POWHEG BOX, Eur. Phys. J. C 73 (2013) 2474 [arXiv:1302.4606] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    C.M. Carloni Calame et al., Precision measurement of the W-boson mass: theoretical contributions and uncertainties, Phys. Rev. D 96 (2017) 093005 [arXiv:1612.02841] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    S. Alioli et al., Precision studies of observables in ppW l and ppγ, Zl + l processes at the LHC, Eur. Phys. J. C 77 (2017) 280 [arXiv:1606.02330] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    A.V. Konychev and P.M. Nadolsky, Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production, Phys. Lett. B 633 (2006) 710 [hep-ph/0506225] [INSPIRE].

  44. [44]

    CDF collaboration, T.A. Aaltonen et al., Precise measurement of the W-boson mass with the Collider Detector at Fermilab, Phys. Rev. D 89 (2014) 072003 [arXiv:1311.0894] [INSPIRE].

  45. [45]

    D0 collaboration, V.M. Abazov et al., Measurement of the W boson mass with the D0 detector, Phys. Rev. D 89 (2014) 012005 [arXiv:1310.8628] [INSPIRE].

  46. [46]

    ATLAS collaboration, Measurement of the W -boson mass in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 110 [arXiv:1701.07240] [INSPIRE].

  47. [47]

    J.M. Campbell et al., Associated production of a Z boson and a single heavy quark jet, Phys. Rev. D 69 (2004) 074021 [hep-ph/0312024] [INSPIRE].

  48. [48]

    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev. D 73 (2006) 054007 [Erratum ibid. D 77 (2008) 019903] [hep-ph/0510362] [INSPIRE].

  49. [49]

    F. Maltoni, T. McElmurry and S. Willenbrock, Inclusive production of a Higgs or Z boson in association with heavy quarks, Phys. Rev. D 72 (2005) 074024 [hep-ph/0505014] [INSPIRE].

  50. [50]

    F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD corrections to \( Zb\overline{b} \) production with massive bottom quarks at the Fermilab Tevatron, Phys. Rev. D 78 (2008) 074014 [arXiv:0806.0808] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    F. Febres Cordero, L. Reina and D. Wackeroth, W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider, Phys. Rev. D 80 (2009) 034015 [arXiv:0906.1923] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    S.P. Baranov, H. Jung, A.V. Lipatov and M.A. Malyshev, Associated production of Z bosons and b-jets at the LHC in the combined k T + collinear QCD factorization approach, Eur. Phys. J. C 77 (2017) 772 [arXiv:1708.07079] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    R. Frederix et al., W and Z/γboson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    F. Krauss, D. Napoletano and S. Schumann, Simulating b-associated production of Z and Higgs bosons with the SHERPA event generator, Phys. Rev. D 95 (2017) 036012 [arXiv:1612.04640] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    E. Bagnaschi et al., Resummation ambiguities in the Higgs transverse-momentum spectrum in the Standard Model and beyond, JHEP 01 (2016) 090 [arXiv:1510.08850] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].

  58. [58]

    J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].

  59. [59]

    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  60. [60]

    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  61. [61]

    CDF, D0 collaboration, T.A. Aaltonen et al., Combination of CDF and D0 W-boson mass measurements, Phys. Rev. D 88 (2013) 052018 [arXiv:1307.7627] [INSPIRE].

  62. [62]

    M. Lim, F. Maltoni, G. Ridolfi and M. Ubiali, Anatomy of double heavy-quark initiated processes, JHEP 09 (2016) 132 [arXiv:1605.09411] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].

  64. [64]

    F. Krauss and D. Napoletano, Towards a fully massive five-flavour scheme, arXiv:1712.06832 [INSPIRE].

  65. [65]

    N. Moretti, P. Petrov, S. Pozzorini and M. Spannowsky, Measuring the signal strength in \( t\overline{t}H \) with \( H\to b\overline{b} \), Phys. Rev. D 93 (2016) 014019 [arXiv:1510.08468] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    G. Bozzi, J. Rojo and A. Vicini, The Impact of PDF uncertainties on the measurement of the W boson mass at the Tevatron and the LHC, Phys. Rev. D 83 (2011) 113008 [arXiv:1104.2056] [INSPIRE].

    ADS  Google Scholar 

  67. [67]

    G. Bozzi, L. Citelli and A. Vicini, Parton density function uncertainties on the W boson mass measurement from the lepton transverse momentum distribution, Phys. Rev. D 91 (2015) 113005 [arXiv:1501.05587] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  69. [69]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  70. [70]

    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

  71. [71]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    F. Cascioli et al., NLO matching for \( t\overline{t}b\overline{b} \) production with massive b-quarks, Phys. Lett. B 734 (2014) 210 [arXiv:1309.5912] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    T. Ježo, J.M. Lindert, N. Moretti and S. Pozzorini, New NLOPS predictions for \( t\overline{t} \) + b-jet production at the LHC, Eur. Phys. J. C 78 (2018) 502 [arXiv:1802.00426] [INSPIRE].

    Google Scholar 

  74. [74]

    M. Wiesemann et al., Higgs production in association with bottom quarks, JHEP 02 (2015) 132 [arXiv:1409.5301] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    C. Degrande, M. Ubiali, M. Wiesemann and M. Zaro, Heavy charged Higgs boson production at the LHC, JHEP 10 (2015) 145 [arXiv:1507.02549] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Zaro.

Additional information

ArXiv ePrint: 1803.04336

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagnaschi, E., Maltoni, F., Vicini, A. et al. Lepton-pair production in association with a \( b\overline{b} \) pair and the determination of the W boson mass. J. High Energ. Phys. 2018, 101 (2018). https://doi.org/10.1007/JHEP07(2018)101

Download citation

Keywords

  • Quark Masses and SM Parameters
  • Heavy Quark Physics
  • Perturbative QCD