Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 13 July 2018
  • Volume 2018, article number 96, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter
Download PDF
  • Julia Harz1 &
  • Kalliopi Petraki1,2 
  • 377 Accesses

  • 51 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We compute the cross-sections for the radiative capture of non-relativistic particles into bound states, in unbroken perturbative non-Abelian theories. We find that the formation of bound states via emission of a gauge boson can be significant for a variety of dark matter models that feature non-Abelian long-range interactions, including multi-TeV scale WIMPs, dark matter co-annihilating with coloured partners and hidden-sector models. Our results disagree with previous computations, on the relative sign of the Abelian and non-Abelian contributions. In particular, in the case of capture of a particle-antiparticle pair into its tightest bound state, we find that these contributions add up, rather than partially canceling each other. We apply our results to dark matter co-annihilating with particles transforming in the (anti)fundamental of SU(3)c, as is the case in degenerate stop-neutralino scenarios in the MSSM. We show that the radiative formation and decay of particle-antiparticle bound states can deplete the dark matter density by (40 − 240)%, for dark matter heavier than 500 GeV. This implies a larger mass difference between the co-annihilating particles, and allows for the dark matter to be as heavy as 3.3 TeV.

Article PDF

Download to read the full article text

Similar content being viewed by others

Higgs-mediated bound states in dark-matter models

Article Open access 22 April 2019

Bound states of WIMP dark matter in Higgs-portal models. Part I. Cross-sections and transition rates

Article Open access 18 June 2021

Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential

Article Open access 13 April 2017
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].

    Article  ADS  Google Scholar 

  2. J.D. March-Russell and S.M. West, WIMPonium and Boost Factors for Indirect Dark Matter Detection, Phys. Lett. B 676 (2009) 133 [arXiv:0812.0559] [INSPIRE].

    Article  ADS  Google Scholar 

  3. W. Shepherd, T.M.P. Tait and G. Zaharijas, Bound states of weakly interacting dark matter, Phys. Rev. D 79 (2009) 055022 [arXiv:0901.2125] [INSPIRE].

    ADS  Google Scholar 

  4. B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].

    Article  Google Scholar 

  5. I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].

    ADS  Google Scholar 

  6. H. An, M.B. Wise and Y. Zhang, Effects of Bound States on Dark Matter Annihilation, Phys. Rev. D 93 (2016) 115020 [arXiv:1604.01776] [INSPIRE].

    ADS  Google Scholar 

  7. H. An, M.B. Wise and Y. Zhang, Strong CMB Constraint On P-Wave Annihilating Dark Matter, Phys. Lett. B 773 (2017) 121 [arXiv:1606.02305] [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and Decay of Electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark Matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Kouvaris, K. Langæble and N.G. Nielsen, The Spectrum of Darkonium in the Sun, JCAP 10 (2016) 012 [arXiv:1607.00374] [INSPIRE].

    Article  ADS  Google Scholar 

  12. I. Baldes, M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys. 4 (2018) 041 [arXiv:1712.07489] [INSPIRE].

    Article  Google Scholar 

  13. K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Laha and E. Braaten, Direct detection of dark matter in universal bound states, Phys. Rev. D 89 (2014) 103510 [arXiv:1311.6386] [INSPIRE].

    ADS  Google Scholar 

  15. A. Butcher, R. Kirk, J. Monroe and S.M. West, Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter?, JCAP 10 (2017) 035 [arXiv:1610.01840] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L. Pearce and A. Kusenko, Indirect Detection of Self-Interacting Asymmetric Dark Matter, Phys. Rev. D 87 (2013) 123531 [arXiv:1303.7294] [INSPIRE].

    ADS  Google Scholar 

  17. J.M. Cline, Y. Farzan, Z. Liu, G.D. Moore and W. Xue, 3.5 keV x rays as the “21 cm line” of dark atoms and a link to light sterile neutrinos, Phys. Rev. D 89 (2014) 121302 [arXiv:1404.3729] [INSPIRE].

  18. W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].

    ADS  Google Scholar 

  19. L. Pearce, K. Petraki and A. Kusenko, Signals from dark atom formation in halos, Phys. Rev. D 91 (2015) 083532 [arXiv:1502.01755] [INSPIRE].

    ADS  Google Scholar 

  20. K. Petraki, L. Pearce and A. Kusenko, Self-interacting asymmetric dark matter coupled to a light massive dark photon, JCAP 07 (2014) 039 [arXiv:1403.1077] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S.J. Lonsdale and R.R. Volkas, Grand unified hidden-sector dark matter, Phys. Rev. D 90 (2014) 083501 [Erratum ibid. D 91 (2015) 129906] [arXiv:1407.4192] [INSPIRE].

  22. S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric Dark Matter and the hadronic spectra of hidden QCD, Phys. Rev. D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].

    ADS  Google Scholar 

  23. S.J. Lonsdale and R.R. Volkas, Comprehensive asymmetric dark matter model, Phys. Rev. D 97 (2018) 103510 [arXiv:1801.05561] [INSPIRE].

    ADS  Google Scholar 

  24. H. An, B. Echenard, M. Pospelov and Y. Zhang, Probing the Dark Sector with Dark Matter Bound States, Phys. Rev. Lett. 116 (2016) 151801 [arXiv:1510.05020] [INSPIRE].

    Article  ADS  Google Scholar 

  25. Z. Kang, Bound states via Higgs exchanging and heavy resonant di-Higgs, Phys. Lett. B 771 (2017) 313 [arXiv:1606.01531] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Elor, H. Liu, T.R. Slatyer and Y. Soreq, Complementarity for Dark Sector Bound States, arXiv:1801.07723 [INSPIRE].

  27. S.R. Coleman, Q Balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].

  28. A. Kusenko and M.E. Shaposhnikov, Supersymmetric Q balls as dark matter, Phys. Lett. B 418 (1998) 46 [hep-ph/9709492] [INSPIRE].

  29. A. Kusenko, Small Q balls, Phys. Lett. B 404 (1997) 285 [hep-th/9704073] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Kusenko, Solitons in the supersymmetric extensions of the standard model, Phys. Lett. B 405 (1997) 108 [hep-ph/9704273] [INSPIRE].

  31. A. Kusenko and P.J. Steinhardt, Q ball candidates for selfinteracting dark matter, Phys. Rev. Lett. 87 (2001) 141301 [astro-ph/0106008] [INSPIRE].

  32. J. Harz, B. Herrmann, M. Klasen, K. Kovarik and Q.L. Boulc’h, Neutralino-stop coannihilation into electroweak gauge and Higgs bosons at one loop, Phys. Rev. D 87 (2013) 054031 [arXiv:1212.5241] [INSPIRE].

    ADS  Google Scholar 

  33. J. Harz, B. Herrmann, M. Klasen, K. Kovařík and M. Meinecke, SUSY-QCD corrections to stop annihilation into electroweak final states including Coulomb enhancement effects, Phys. Rev. D 91 (2015) 034012 [arXiv:1410.8063] [INSPIRE].

    ADS  Google Scholar 

  34. J. Harz, B. Herrmann, M. Klasen and K. Kovarik, One-loop corrections to neutralino-stop coannihilation revisited, Phys. Rev. D 91 (2015) 034028 [arXiv:1409.2898] [INSPIRE].

    ADS  Google Scholar 

  35. M.J. Baker et al., The Coannihilation Codex, JHEP 12 (2015) 120 [arXiv:1510.03434] [INSPIRE].

    ADS  Google Scholar 

  36. A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of Coannihilation with a Scalar Top Partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].

    ADS  Google Scholar 

  37. J. Harz, B. Herrmann, M. Klasen, K. Kovarik and P. Steppeler, Theoretical uncertainty of the supersymmetric dark matter relic density from scheme and scale variations, Phys. Rev. D 93 (2016) 114023 [arXiv:1602.08103] [INSPIRE].

    ADS  Google Scholar 

  38. S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. A. Pierce, N.R. Shah and S. Vogl, Stop Co-Annihilation in the Minimal Supersymmetric Standard Model Revisited, Phys. Rev. D 97 (2018) 023008 [arXiv:1706.01911] [INSPIRE].

    ADS  Google Scholar 

  40. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

  41. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

  42. A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect Detection Analysis: Wino Dark Matter Case Study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Baumgart, I.Z. Rothstein and V. Vaidya, Constraints on Galactic Wino Densities from Gamma Ray Lines, JHEP 04 (2015) 106 [arXiv:1412.8698] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of Minimal Dark Matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Beneke, A. Bharucha, A. Hryczuk, S. Recksiegel and P. Ruiz-Femenia, The last refuge of mixed wino-Higgsino dark matter, JHEP 01 (2017) 002 [arXiv:1611.00804] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. M. Baumgart et al., Resummed Photon Spectra for WIMP Annihilation, JHEP 03 (2018) 117 [arXiv:1712.07656] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Beneke, Perturbative heavy quark-anti-quark systems, hep-ph/9911490 [INSPIRE].

  48. S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01 (2017) 013 [arXiv:1609.00474] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Biondini and M. Laine, Thermal dark matter co-annihilating with a strongly interacting scalar, JHEP 04 (2018) 072 [arXiv:1801.05821] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part I. Framework, JHEP 11 (2017) 108 [arXiv:1706.02253] [INSPIRE].

  53. E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part II. Coulomb resummation, JHEP 02 (2018) 150 [arXiv:1708.07155] [INSPIRE].

  54. E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects, JHEP 05 (2018) 062 [arXiv:1712.07142] [INSPIRE].

  55. A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. W.-Y. Keung, I. Low and Y. Zhang, Reappraisal of dark matter co-annihilating with a top or bottom partner, Phys. Rev. D 96 (2017) 015008 [arXiv:1703.02977] [INSPIRE].

    ADS  Google Scholar 

  57. K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. J. Harz and K. Petraki, Higgs Enhancement for the Dark Matter Relic Density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].

    ADS  Google Scholar 

  59. J. Harz and K. Petraki, in preparation.

  60. M. Geller, S. Iwamoto, G. Lee, Y. Shadmi and O. Telem, Dark quarkonium formation in the early universe, JHEP 06 (2018) 135 [arXiv:1802.07720] [INSPIRE].

    Article  Google Scholar 

  61. N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. C. Itzykson and J. Zuber, Quantum field theory, McGraw-Hill (1980) [INSPIRE].

  63. Y. Kats and M.D. Schwartz, Annihilation decays of bound states at the LHC, JHEP 04 (2010) 016 [arXiv:0912.0526] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. A.D. Sakharov, Interaction of an Electron and Positron in Pair Production, Zh. Eksp. Teor. Fiz. 18 (1948) 631 [INSPIRE].

    Google Scholar 

  65. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Annalen Phys. 403 (1931) 257.

    Article  ADS  MATH  Google Scholar 

  66. P.R. Manuel Drees, Rohini Godbole, Theory and Phenomenology of Sparticles, World Scientific (2005).

  67. J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].

  68. S. El Hedri, A. Kaminska and M. de Vries, A Sommerfeld Toolbox for Colored Dark Sectors, Eur. Phys. J. C 77 (2017) 622 [arXiv:1612.02825] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].

    Article  ADS  Google Scholar 

  70. S. Biondini, Bound-state effects for dark matter with Higgs-like mediators, JHEP 06 (2018) 104 [arXiv:1805.00353] [INSPIRE].

    Article  Google Scholar 

  71. A. Messiah, Quantum mechanics, North-Holland Pub. Co. (1962).

  72. A.I. Akhiezer and N.P. Merenkov, The theory of lepton bound-state production, J. Phys. B 29 (1996) 2135.

    ADS  Google Scholar 

  73. A.V. Manohar and I.W. Stewart, Running of the heavy quark production current and 1/v potential in QCD, Phys. Rev. D 63 (2001) 054004 [hep-ph/0003107] [INSPIRE].

  74. A.V. Manohar and I.W. Stewart, Renormalization group analysis of the QCD quark potential to order v 2, Phys. Rev. D 62 (2000) 014033 [hep-ph/9912226] [INSPIRE].

  75. J.J. Sakurai, Modern quantum mechanics, Addison-Wesley (1994).

  76. A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].

  77. M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].

  78. B. Ioffe and M. Shifman, At the Frontier of Particle Physics: Handbook of QCD: Boris Ioffe Festschrift. vol. 4, World Scientific (2001).

  79. A.H. Hoang and M. Stahlhofen, Ultrasoft NLL Running of the Nonrelativistic O(v) QCD Quark Potential, JHEP 06 (2011) 088 [arXiv:1102.0269] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & Sorbonne Université, 4 Place Jussieu, F-75252, Paris, France

    Julia Harz & Kalliopi Petraki

  2. Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Kalliopi Petraki

Authors
  1. Julia Harz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Kalliopi Petraki
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Kalliopi Petraki.

Additional information

ArXiv ePrint: 1805.01200

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harz, J., Petraki, K. Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter. J. High Energ. Phys. 2018, 96 (2018). https://doi.org/10.1007/JHEP07(2018)096

Download citation

  • Received: 14 May 2018

  • Accepted: 30 June 2018

  • Published: 13 July 2018

  • DOI: https://doi.org/10.1007/JHEP07(2018)096

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Perturbative QCD
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature