Y. Akiba et al., The hot QCD white paper: exploring the phases of QCD at RHIC and the LHC, arXiv:1502.02730 [INSPIRE].
K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74 (2011) 014001 [arXiv:1005.4814] [INSPIRE].
A. Adams, L.D. Carr, T. Schäfer, P. Steinberg and J.E. Thomas, Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality, New J. Phys. 14 (2012) 115009 [arXiv:1205.5180] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B.V. Jacak and B. Müller, The exploration of hot nuclear matter, Science 337 (2012) 310 [INSPIRE].
ADS
Article
Google Scholar
S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].
HotQCD collaboration, A. Bazavov et al., Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].
A. Bazavov, P. Petreczky and J.H. Weber, Equation of state in 2 + 1 flavor QCD at high temperatures, Phys. Rev. D 97 (2018) 014510 [arXiv:1710.05024] [INSPIRE].
L.D. McLerran and B. Svetitsky, Quark liberation at high temperature: a Monte Carlo study of SU(2) gauge theory, Phys. Rev. D 24 (1981) 450 [INSPIRE].
ADS
Google Scholar
O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE].
WHOT-QCD collaboration, Y. Maezawa et al., Heavy-quark free energy, Debye mass and spatial string tension at finite temperature in two flavor lattice QCD with Wilson quark action, Phys. Rev. D 75 (2007) 074501 [hep-lat/0702004] [INSPIRE].
A. Bazavov et al., Polyakov loop in 2 + 1 flavor QCD from low to high temperatures, Phys. Rev. D 93 (2016) 114502 [arXiv:1603.06637] [INSPIRE].
N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].
A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].
T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].
STAR collaboration, L. Adamczyk et al., Suppression of ϒ production in d+Au and Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Lett. B 735 (2014) 127 [Erratum ibid. B 743 (2015) 537] [arXiv:1312.3675] [INSPIRE].
PHENIX collaboration, A. Adare et al., Measurement of ϒ(1S + 2S + 3S) production in p+p and Au+Au collisions at \( \sqrt{{\mathrm{s}}_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. C 91 (2015) 024913 [arXiv:1404.2246] [INSPIRE].
PHENIX collaboration, A. Adare et al., J/ψ production vs centrality, transverse momentum and rapidity in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. Lett. 98 (2007) 232301 [nucl-ex/0611020] [INSPIRE].
PHENIX collaboration, A. Adare et al., J/ψ production in \( \sqrt{{\mathrm{s}}_{\mathrm{NN}}}=200 \) GeV Cu+Cu collisions, Phys. Rev. Lett. 101 (2008) 122301 [arXiv:0801.0220] [INSPIRE].
PHENIX collaboration, A. Adare et al., J/ψ suppression at forward rapidity in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. C 84 (2011) 054912 [arXiv:1103.6269] [INSPIRE].
STAR collaboration, L. Adamczyk et al., J/ψ production at low p
T in Au+Au and Cu+Cu collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV with the STAR detector, Phys. Rev. C 90 (2014) 024906 [arXiv:1310.3563] [INSPIRE].
CMS collaboration, Indications of suppression of excited ϒ states in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Rev. Lett. 107 (2011) 052302 [arXiv:1105.4894] [INSPIRE].
CMS collaboration, Observation of sequential ϒ suppression in PbPb collisions, Phys. Rev. Lett. 109 (2012) 222301 [Erratum ibid. 120 (2018) 199903] [arXiv:1208.2826] [INSPIRE].
CMS collaboration, Suppression of ϒ(1S), ϒ(2S) and ϒ(3S) production in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Lett. B 770 (2017) 357 [arXiv:1611.01510] [INSPIRE].
ALICE collaboration, Suppression of ϒ(1S) at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Lett. B 738 (2014) 361 [arXiv:1405.4493] [INSPIRE].
ALICE collaboration, Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Lett. B 734 (2014) 314 [arXiv:1311.0214] [INSPIRE].
ALICE collaboration, J/ψ suppression at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Lett. B 766 (2017) 212 [arXiv:1606.08197] [INSPIRE].
P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of charmonium production and a new look at J/ψ suppression, Phys. Lett. B 490 (2000) 196 [nucl-th/0007059] [INSPIRE].
A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Heavy quark(onium) at LHC: the statistical hadronization case, J. Phys. G 37 (2010) 094014 [arXiv:1002.4441] [INSPIRE].
G. Aarts et al., Heavy-flavor production and medium properties in high-energy nuclear collisions — what next?, Eur. Phys. J. A 53 (2017) 93 [arXiv:1612.08032] [INSPIRE].
R. Rapp, D. Blaschke and P. Crochet, Charmonium and bottomonium production in heavy-ion collisions, Prog. Part. Nucl. Phys. 65 (2010) 209 [arXiv:0807.2470] [INSPIRE].
ADS
Article
Google Scholar
X. Zhao and R. Rapp, Charmonium in medium: from correlators to experiment, Phys. Rev. C 82 (2010) 064905 [arXiv:1008.5328] [INSPIRE].
X. Zhao and R. Rapp, Medium modifications and production of charmonia at LHC, Nucl. Phys. A 859 (2011) 114 [arXiv:1102.2194] [INSPIRE].
ADS
Article
Google Scholar
K. Zhou, N. Xu, Z. Xu and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89 (2014) 054911 [arXiv:1401.5845] [INSPIRE].
T. Song, K.C. Han and C.M. Ko, Bottomonia suppression in heavy-ion collisions, Phys. Rev. C 85 (2012) 014902 [arXiv:1109.6691] [INSPIRE].
A. Emerick, X. Zhao and R. Rapp, Bottomonia in the quark-gluon plasma and their production at RHIC and LHC, Eur. Phys. J. A 48 (2012) 72 [arXiv:1111.6537] [INSPIRE].
K. Zhou, N. Xu and P. Zhuang, ϒ production in heavy ion collisions at LHC, Nucl. Phys. A 931 (2014) 654 [arXiv:1408.3900] [INSPIRE].
X. Yao and B. Müller, Approach to equilibrium of quarkonium in quark-gluon plasma, Phys. Rev. C 97 (2018) 014908 [Erratum ibid. C 97 (2018) 049903] [arXiv:1709.03529] [INSPIRE].
M. Strickland, Thermal ϒ
1s and χ
b1 suppression in \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV Pb-Pb collisions at the LHC, Phys. Rev. Lett. 107 (2011) 132301 [arXiv:1106.2571] [INSPIRE].
M. Strickland and D. Bazow, Thermal bottomonium suppression at RHIC and LHC, Nucl. Phys. A 879 (2012) 25 [arXiv:1112.2761] [INSPIRE].
B. Krouppa, R. Ryblewski and M. Strickland, Bottomonia suppression in 2.76 TeV Pb-Pb collisions, Phys. Rev. C 92 (2015) 061901 [arXiv:1507.03951] [INSPIRE].
B. Krouppa and M. Strickland, Predictions for bottomonia suppression in 5.023 TeV Pb-Pb collisions, Universe 2 (2016) 16 [arXiv:1605.03561] [INSPIRE].
B. Krouppa, A. Rothkopf and M. Strickland, Bottomonium suppression using a lattice QCD vetted potential, Phys. Rev. D 97 (2018) 016017 [arXiv:1710.02319] [INSPIRE].
C. Young and K. Dusling, Quarkonium above deconfinement as an open quantum system, Phys. Rev. C 87 (2013) 065206 [arXiv:1001.0935] [INSPIRE].
N. Borghini and C. Gombeaud, Heavy quarkonia in a medium as a quantum dissipative system: master equation approach, Eur. Phys. J. C 72 (2012) 2000 [arXiv:1109.4271] [INSPIRE].
Y. Akamatsu and A. Rothkopf, Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma, Phys. Rev. D 85 (2012) 105011 [arXiv:1110.1203] [INSPIRE].
A. Rothkopf, A first look at bottomonium melting via a stochastic potential, JHEP 04 (2014) 085 [arXiv:1312.3246] [INSPIRE].
ADS
Article
Google Scholar
Y. Akamatsu, Heavy quark master equations in the Lindblad form at high temperatures, Phys. Rev. D 91 (2015) 056002 [arXiv:1403.5783] [INSPIRE].
Y. Akamatsu, Langevin dynamics and decoherence of heavy quarks at high temperatures, Phys. Rev. C 92 (2015) 044911 [arXiv:1503.08110] [INSPIRE].
S. Kajimoto, Y. Akamatsu, M. Asakawa and A. Rothkopf, Dynamical dissociation of quarkonia by wave function decoherence, Phys. Rev. D 97 (2018) 014003 [arXiv:1705.03365] [INSPIRE].
J.-P. Blaizot, D. De Boni, P. Faccioli and G. Garberoglio, Heavy quark bound states in a quark-gluon plasma: dissociation and recombination, Nucl. Phys. A 946 (2016) 49 [arXiv:1503.03857] [INSPIRE].
ADS
Article
Google Scholar
J.-P. Blaizot and M.A. Escobedo, Quantum and classical dynamics of heavy quarks in a quark-gluon plasma, JHEP 06 (2018) 034 [arXiv:1711.10812] [INSPIRE].
ADS
Article
Google Scholar
J.-P. Blaizot and M.A. Escobedo, The approach to equilibrium of a quarkonium in a quark-gluon plasma, arXiv:1803.07996 [INSPIRE].
N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo, Quarkonium suppression in heavy-ion collisions: an open quantum system approach, Phys. Rev. D 96 (2017) 034021 [arXiv:1612.07248] [INSPIRE].
N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo, Heavy quarkonium suppression in a fireball, Phys. Rev. D 97 (2018) 074009 [arXiv:1711.04515] [INSPIRE].
D. De Boni, Fate of in-medium heavy quarks via a Lindblad equation, JHEP 08 (2017) 064 [arXiv:1705.03567] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Katz and P.B. Gossiaux, The Schrödinger-Langevin equation with and without thermal fluctuations, Annals Phys. 368 (2016) 267 [arXiv:1504.08087] [INSPIRE].
M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].
A. Beraudo, J.P. Blaizot and C. Ratti, Real and imaginary-time \( Q\overline{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].
N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].
A. Rothkopf, T. Hatsuda and S. Sasaki, Complex heavy-quark potential at finite temperature from lattice QCD, Phys. Rev. Lett. 108 (2012) 162001 [arXiv:1108.1579] [INSPIRE].
ADS
Article
Google Scholar
Y. Burnier, O. Kaczmarek and A. Rothkopf, Static quark-antiquark potential in the quark-gluon plasma from lattice QCD, Phys. Rev. Lett. 114 (2015) 082001 [arXiv:1410.2546] [INSPIRE].
Y. Burnier, O. Kaczmarek and A. Rothkopf, Quarkonium at finite temperature: towards realistic phenomenology from first principles, JHEP 12 (2015) 101 [arXiv:1509.07366] [INSPIRE].
ADS
Google Scholar
Y. Burnier and A. Rothkopf, Complex heavy-quark potential and Debye mass in a gluonic medium from lattice QCD, Phys. Rev. D 95 (2017) 054511 [arXiv:1607.04049] [INSPIRE].
H.P. Breuer and F. Petruccione, The theory of open quantum systems, Oxford University Press, Oxford, U.K., (2002) [INSPIRE].
N. Gisin and I.C. Percival, The quantum-state diffusion model applied to open systems, J. Phys. A 25 (1992) 5677.
I.C. Percival, Quantum state diffusion, Cambridge University Press, Cambridge, U.K., (1998).
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48 (1976) 119 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar