On the viability of regular black holes


The evaporation of black holes raises a number of conceptual issues, most of them related to the final stages of evaporation, where the interplay between the central singularity and Hawking radiation cannot be ignored. Regular models of black holes replace the central singularity with a nonsingular spacetime region, in which an effective classical geometric description is available. It has been argued that these models provide an effective, but complete, description of the evaporation of black holes at all times up to their eventual disappearance. However, here we point out that known models fail to be self-consistent: the regular core is exponentially unstable against perturbations with a finite timescale, while the evaporation time is infinite, therefore making the instability impossible to prevent. We also discuss how to overcome these difficulties, highlighting that this can be done only at the price of accepting that these models cannot be fully predictive regarding the final stages of evaporation.

A preprint version of the article is available at ArXiv.


  1. [1]

    S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  2. [2]

    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    P. Chen, Y.C. Ong and D.-h. Yeom, Black Hole Remnants and the Information Loss Paradox, Phys. Rept. 603 (2015) 1 [arXiv:1412.8366] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    D. Marolf, The Black Hole information problem: past, present and future, Rept. Prog. Phys. 80 (2017) 092001 [arXiv:1703.02143] [INSPIRE].

  7. [7]

    W.G. Unruh and R.M. Wald, Information Loss, Rept. Prog. Phys. 80 (2017) 092002 [arXiv:1703.02140] [INSPIRE].

  8. [8]

    A. Ashtekar and M. Bojowald, Black hole evaporation: A paradigm, Class. Quant. Grav. 22 (2005) 3349 [gr-qc/0504029] [INSPIRE].

  9. [9]

    M. Bojowald, Information loss, made worse by quantum gravity?, Front. Phys. 3 (2015) 33.

    Article  Google Scholar 

  10. [10]

    M. Bojowald, S. Brahma and J.D. Reyes, Covariance in models of loop quantum gravity: Spherical symmetry, Phys. Rev. D 92 (2015) 045043 [arXiv:1507.00329] [INSPIRE].

  11. [11]

    S.A. Hayward, Formation and evaporation of regular black holes, Phys. Rev. Lett. 96 (2006) 031103 [gr-qc/0506126] [INSPIRE].

  12. [12]

    K.A. Bronnikov, V.N. Melnikov and H. Dehnen, Regular black holes and black universes, Gen. Rel. Grav. 39 (2007) 973 [gr-qc/0611022] [INSPIRE].

  13. [13]

    V.P. Frolov and G.A. Vilkovisky, Quantum gravity removes classical singularities and shortens the life of black holes, in proceedings of The Second Marcel Grossmann Meeting on the Recent Developments of General Relativity (In Honor of Albert Einstein), Trieste, Italy, 5-11 July 1979, p. 455, [INSPIRE].

  14. [14]

    V.P. Frolov and G.A. Vilkovisky, Spherically Symmetric Collapse in Quantum Gravity, Phys. Lett. B 106 (1981) 307 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    V.P. Frolov and I.D. Novikov, editors, Black hole physics: Basic concepts and new developments, (1998), [INSPIRE].

  16. [16]

    V.P. Frolov, Information loss problem and ablack holemodel with a closed apparent horizon, JHEP 05 (2014) 049 [arXiv:1402.5446] [INSPIRE].

  17. [17]

    J.M. Bardeen. Non-singular general-relativistic gravitational collapse, in Proceedings of International Conference GR5, Tbilisi, USSR, 1968, p. 174.

  18. [18]

    A. Borde, Regular black holes and topology change, Phys. Rev. D 55 (1997) 7615 [gr-qc/9612057] [INSPIRE].

  19. [19]

    I. Dymnikova, Vacuum nonsingular black hole, Gen. Rel. Grav. 24 (1992) 235 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    I. Dymnikova, Cosmological term as a source of mass, Class. Quant. Grav. 19 (2002) 725 [gr-qc/0112052] [INSPIRE].

  21. [21]

    S. Ansoldi, Spherical black holes with regular center: A review of existing models including a recent realization with Gaussian sources, in Conference on Black Holes and Naked Singularities Milan, Italy, May 10-12, 2007, 2008, arXiv:0802.0330 [INSPIRE].

  22. [22]

    T. De Lorenzo, C. Pacilio, C. Rovelli and S. Speziale, On the Effective Metric of a Planck Star, Gen. Rel. Grav. 47 (2015) 41 [arXiv:1412.6015] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    V.P. Frolov, Notes on nonsingular models of black holes, Phys. Rev. D 94 (2016) 104056 [arXiv:1609.01758] [INSPIRE].

  24. [24]

    V.P. Frolov and A. Zelnikov, Quantum radiation from an evaporating nonsingular black hole, Phys. Rev. D 95 (2017) 124028 [arXiv:1704.03043] [INSPIRE].

  25. [25]

    C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 (1964) B571 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    W.C. Hernandez and C.W. Misner, Observer Time as a Coordinate in Relativistic Spherical Hydrodynamics, Astrophys. J. 143 (1966) 452 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S.A. Hayward, Gravitational energy in spherical symmetry, Phys. Rev. D 53 (1996) 1938 [gr-qc/9408002] [INSPIRE].

  28. [28]

    V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Quasinormal modes and Strong Cosmic Censorship, Phys. Rev. Lett. 120 (2018) 031103 [arXiv:1711.10502] [INSPIRE].

  29. [29]

    S. Hod, Strong cosmic censorship in charged black-hole spacetimes: As strong as ever, arXiv:1801.07261 [INSPIRE].

  30. [30]

    O.J.C. Dias, F.C. Eperon, H.S. Reall and J.E. Santos, Strong cosmic censorship in de Sitter space, Phys. Rev. D 97 (2018) 104060 [arXiv:1801.09694] [INSPIRE].

  31. [31]

    S. Hod, Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes, Phys. Lett. B 780 (2018) 221 [arXiv:1803.05443] [INSPIRE].

  32. [32]

    M. Simpson and R. Penrose, Internal instability in a Reissner-Nordström black hole, Int. J. Theor. Phys. 7 (1973) 183 [INSPIRE].

    Article  Google Scholar 

  33. [33]

    E. Poisson and W. Israel, Inner-horizon instability and mass inflation in black holes, Phys. Rev. Lett. 63 (1989) 1663 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    E. Poisson and W. Israel, Eschatology of the Black Hole Interior, Phys. Lett. B 233 (1989) 74 [INSPIRE].

  35. [35]

    E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. [36]

    C. Barrabes, W. Israel and E. Poisson, Collision of light-like shells and mass inflation in rotating black holes, Class. Quant. Grav. 7 (1990) L273.

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    A. Ori, Inner structure of a charged black hole: An exact mass-inflation solution, Phys. Rev. Lett. 67 (1991) 789 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    M. Dafermos, The interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math. 58 (2005) 0445.

    MathSciNet  Article  Google Scholar 

  39. [39]

    A.J.S. Hamilton and P.P. Avelino, The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes, Phys. Rept. 495 (2010) 1 [arXiv:0811.1926] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    D. Markovic and E. Poisson, Classical stability and quantum instability of black hole Cauchy horizons, Phys. Rev. Lett. 74 (1995) 1280 [gr-qc/9411002] [INSPIRE].

  41. [41]

    E.G. Brown, R.B. Mann and L. Modesto, Mass Inflation in the Loop Black Hole, Phys. Rev. D 84 (2011) 104041 [arXiv:1104.3126] [INSPIRE].

  42. [42]

    T. Dray and G. ’t Hooft, The Effect of Spherical Shells of Matter on the Schwarzschild Black Hole, Commun. Math. Phys. 99 (1985) 613 [INSPIRE].

  43. [43]

    I.H. Redmount, Blue-Sheet Instability of Schwarzschild Wormholes, Prog. Theor. Phys. 73 (1985) 1401.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    S.K. Blau, ’t Hooft Dray Geometries and the Death of White Holes, Phys. Rev. D 39 (1989) 2901 [INSPIRE].

  45. [45]

    C. Barceló, R. Carballo-Rubio and L.J. Garay, Black holes turn white fast, otherwise stay black: no half measures, JHEP 01 (2016) 157 [arXiv:1511.00633] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    D. Núñez, H.P. de Oliveira and J. Salim, Dynamics and collision of massive shells in curved backgrounds, Class. Quant. Grav. 10 (1993) 1117 [gr-qc/9302003] [INSPIRE].

  47. [47]

    R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5 (1972) 2419 [INSPIRE].

  48. [48]

    R.H. Price, Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields, Phys. Rev. D 5 (1972) 2439 [INSPIRE].

  49. [49]

    C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D 49 (1994) 883 [gr-qc/9307009] [INSPIRE].

  50. [50]

    C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 2. Nonlinear evolution, Phys. Rev. D 49 (1994) 890 [gr-qc/9307010] [INSPIRE].

  51. [51]

    M. Dafermos and I. Rodnianski, A proof of Prices law for the collapse of a selfgravitating scalar field, Invent. Math. 162 (2005) 381.

  52. [52]

    E. Alesci and L. Modesto, Particle Creation by Loop Black Holes, Gen. Rel. Grav. 46 (2014) 1656 [arXiv:1101.5792] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  53. [53]

    P. Bueno and P.A. Cano, Universal black hole stability in four dimensions, Phys. Rev. D 96 (2017) 024034 [arXiv:1704.02967] [INSPIRE].

  54. [54]

    A. Fabbri, D.J. Navarro and J. Navarro-Salas, Evaporation of near extremal Reissner-Nordström black holes, Phys. Rev. Lett. 85 (2000) 2434 [hep-th/0004027] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. [55]

    C. Barceló, S. Liberati, S. Sonego and M. Visser, Minimal conditions for the existence of a Hawking-like flux, Phys. Rev. D 83 (2011) 041501 [arXiv:1011.5593] [INSPIRE].

  56. [56]

    C. Barceló, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation from evolving black holes and compact horizonless objects, JHEP 02 (2011) 003 [arXiv:1011.5911] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  57. [57]

    K. Falls and D.F. Litim, Black hole thermodynamics under the microscope, Phys. Rev. D 89 (2014) 084002 [arXiv:1212.1821] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Francesco Di Filippo.

Additional information

ArXiv ePrint: 1805.02675

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carballo-Rubio, R., Di Filippo, F., Liberati, S. et al. On the viability of regular black holes. J. High Energ. Phys. 2018, 23 (2018). https://doi.org/10.1007/JHEP07(2018)023

Download citation


  • Black Holes
  • Models of Quantum Gravity
  • Spacetime Singularities