Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev.
D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].
SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev.
C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev.
D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
KamLAND collaboration, A. Gando et al., Constraints on θ
13
from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev.
D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].
K.G. Begeman, A.H. Broeils and R.H. Sanders, Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics, Mon. Not. Roy. Astron. Soc.
249 (1991) 523 [INSPIRE].
ADS
Article
Google Scholar
R. Massey et al., Dark matter maps reveal cosmic scaffolding, Nature
445 (2007) 286 [astro-ph/0701594] [INSPIRE].
D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science
347 (2015) 1462 [arXiv:1503.07675] [INSPIRE].
ADS
Article
Google Scholar
Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys.
594 (2016) A1 [arXiv:1502.01582] [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109
Muon Decays?, Phys. Lett.
B 67 (1977) 421 [INSPIRE].
T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc.
C 7902131 (1979) 95 [INSPIRE].
Google Scholar
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.
C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
Google Scholar
A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett.
B 93 (1980) 389 [Erratum ibid.
B 95 (1980) 461] [INSPIRE].
A. Zee, Charged Scalar Field and Quantum Number Violations, Phys. Lett.
B 161 (1985) 141 [INSPIRE].
ADS
Article
Google Scholar
A. Zee, Quantum Numbers of Majorana Neutrino Masses, Nucl. Phys.
B 264 (1986) 99 [INSPIRE].
ADS
Article
Google Scholar
K.S. Babu, Model of ‘Calculable’ Majorana Neutrino Masses, Phys. Lett.
B 203 (1988) 132 [INSPIRE].
ADS
Article
Google Scholar
Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett.
113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].
ADS
Article
Google Scholar
B.S. Acharya, M. Fairbairn and E. Hardy, Glueball dark matter in non-standard cosmologies, arXiv:1704.01804 [INSPIRE].
N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP Dark Matter from the Spontaneous Breaking of a Global Group, JCAP
04 (2015) 012 [arXiv:1501.01973] [INSPIRE].
ADS
Article
Google Scholar
N. Bernal, C. Garcia-Cely and R. Rosenfeld, ℤ
3
WIMP and SIMP Dark Matter from a Global U(1) Breaking, Nucl. Part. Phys. Proc.
267-269 (2015) 353 [INSPIRE].
N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP
03 (2016) 018 [arXiv:1510.08063] [INSPIRE].
ADS
Article
Google Scholar
N. Bernal and X. Chu, ℤ
2
SIMP Dark Matter, JCAP
01 (2016) 006 [arXiv:1510.08527] [INSPIRE].
ADS
Article
Google Scholar
N. Bernal, X. Chu and J. Pradler, Simply split strongly interacting massive particles, Phys. Rev.
D 95 (2017) 115023 [arXiv:1702.04906] [INSPIRE].
Google Scholar
S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z
3
symmetry, JHEP
09 (2015) 063 [arXiv:1505.00960] [INSPIRE].
Article
Google Scholar
S.-M. Choi, Y.-J. Kang and H.M. Lee, On thermal production of self-interacting dark matter, JHEP
12 (2016) 099 [arXiv:1610.04748] [INSPIRE].
ADS
Article
Google Scholar
S.-M. Choi and H.M. Lee, Resonant SIMP dark matter, Phys. Lett.
B 758 (2016) 47 [arXiv:1601.03566] [INSPIRE].
ADS
Article
MATH
Google Scholar
S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP
04 (2017) 154 [arXiv:1702.07860] [INSPIRE].
ADS
Article
Google Scholar
J. Cline, H. Liu, T. Slatyer and W. Xue, Enabling Forbidden Dark Matter, arXiv:1702.07716 [INSPIRE].
U.K. Dey, T.N. Maity and T.S. Ray, Light Dark Matter through Assisted Annihilation, JCAP
03 (2017) 045 [arXiv:1612.09074] [INSPIRE].
ADS
Article
Google Scholar
M. Farina, D. Pappadopulo, J.T. Ruderman and G. Trevisan, Phases of Cannibal Dark Matter, JHEP
12 (2016) 039 [arXiv:1607.03108] [INSPIRE].
ADS
Article
Google Scholar
L. Forestell, D.E. Morrissey and K. Sigurdson, Non-Abelian Dark Forces and the Relic Densities of Dark Glueballs, Phys. Rev.
D 95 (2017) 015032 [arXiv:1605.08048] [INSPIRE].
J. Halverson, B.D. Nelson and F. Ruehle, String Theory and the Dark Glueball Problem, Phys. Rev.
D 95 (2017) 043527 [arXiv:1609.02151] [INSPIRE].
M. Hansen, K. Langæble and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev.
D 92 (2015) 075036 [arXiv:1507.01590] [INSPIRE].
Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett.
115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP
05 (2016) 090 [arXiv:1512.07917] [INSPIRE].
ADS
Article
Google Scholar
A. Kamada, M. Yamada, T.T. Yanagida and K. Yonekura, SIMP from a strong U(1) gauge theory with a monopole condensation, Phys. Rev.
D 94 (2016) 055035 [arXiv:1606.01628] [INSPIRE].
A. Kamada, H. Kim and T. Sekiguchi, Axion-like particle assisted strongly interacting massive particle, arXiv:1704.04505 [INSPIRE].
E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett.
116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].
ADS
Article
Google Scholar
E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, arXiv:1706.05381 [INSPIRE].
H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z
′
-portal, Phys. Lett.
B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].
ADS
Article
MATH
Google Scholar
H.M. Lee and M.-S. Seo, Models for SIMP dark matter and dark photon, AIP Conf. Proc.
1743 (2016) 060003 [arXiv:1510.05116] [INSPIRE].
D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev.
D 94 (2016) 035005 [arXiv:1602.04219] [INSPIRE].
K. Tsumura, M. Yamada and Y. Yamaguchi, Gravitational wave from dark sector with dark pion, arXiv:1704.00219 [INSPIRE].
N. Yamanaka, S. Fujibayashi, S. Gongyo and H. Iida, Dark matter in the hidden gauge theory, arXiv:1411.2172 [INSPIRE].
O.D. Elbert, J.S. Bullock, S. Garrison-Kimmel, M. Rocha, J. Oñorbe and A.H.G. Peter, Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary, Mon. Not. Roy. Astron. Soc.
453 (2015) 29 [arXiv:1412.1477] [INSPIRE].
ADS
Article
Google Scholar
R. Massey et al., The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc.
449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].
ADS
Article
Google Scholar
F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer and S. Sarkar, On the interpretation of dark matter self-interactions in Abell 3827, Mon. Not. Roy. Astron. Soc.
452 (2015) L54 [arXiv:1504.06576] [INSPIRE].
ADS
Article
Google Scholar
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.
D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
E. Ma, Z(3) Dark Matter and Two-Loop Neutrino Mass, Phys. Lett.
B 662 (2008) 49 [arXiv:0708.3371] [INSPIRE].
ADS
Article
Google Scholar
L.M. Krauss, S. Nasri and M. Trodden, A Model for neutrino masses and dark matter, Phys. Rev.
D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].
M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett.
102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].
M. Gustafsson, J.M. No and M.A. Rivera, Predictive Model for Radiatively Induced Neutrino Masses and Mixings with Dark Matter, Phys. Rev. Lett.
110 (2013) 211802 [Erratum ibid.
112 (2014) 259902] [arXiv:1212.4806] [INSPIRE].
S.-Y. Ho, T. Toma and K. Tsumura, Systematic U(1)
B−L
extensions of loop-induced neutrino mass models with dark matter, Phys. Rev.
D 94 (2016) 033007 [arXiv:1604.07894] [INSPIRE].
M. Aoki and T. Toma, Impact of semi-annihilation of ℤ
3
symmetric dark matter with radiative neutrino masses, JCAP
09 (2014) 016 [arXiv:1405.5870] [INSPIRE].
ADS
Article
Google Scholar
R. Ding, Z.-L. Han, Y. Liao and W.-P. Xie, Radiative neutrino mass with ℤ
3
dark matter: from relic density to LHC signatures, JHEP
05 (2016) 030 [arXiv:1601.06355] [INSPIRE].
ADS
Article
Google Scholar
M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP
11 (2014) 052 [arXiv:1409.5439] [INSPIRE].
ADS
Article
Google Scholar
MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ
+ → e+
γ with the full dataset of the MEG experiment, Eur. Phys. J.
C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at
\( \sqrt{s}=8 \)
TeV with the ATLAS detector, JHEP
05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys.
C 38 (2014) 090001 [INSPIRE].
M. Carena, A. de Gouvêa, A. Freitas and M. Schmitt, Invisible Z boson decays at e
+
e
−
colliders, Phys. Rev.
D 68 (2003) 113007 [hep-ph/0308053] [INSPIRE].
ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at
\( \sqrt{s}=7 \)
and 8 TeV, JHEP
08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
ATLAS, CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at
\( \sqrt{s}=7 \)
and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett.
114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.
D 46 (1992) 381 [INSPIRE].
ADS
Google Scholar
C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A Global fit to extended oblique parameters, Phys. Lett.
B 326 (1994) 276 [hep-ph/9307337] [INSPIRE].
M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J.
C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].
ADS
Article
Google Scholar
Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J.
C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J.
C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].
ADS
Article
Google Scholar
E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys.
69 (1990) 1 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys.
B 360 (1991) 145 [INSPIRE].
ADS
Article
Google Scholar
Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.
594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J.
606 (2004) 819 [astro-ph/0309303] [INSPIRE].
D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J.
604 (2004) 596 [astro-ph/0312273] [INSPIRE].
S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J.
679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].
ADS
Article
Google Scholar
A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc.
430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys.
B 368 (1992) 3 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Rai and G. Senjanović, Gravity and domain wall problem, Phys. Rev.
D 49 (1994) 2729 [hep-ph/9301240] [INSPIRE].