Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The energy distribution of subjets and the jet shape

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 13 July 2017
  • Volume 2017, article number 64, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The energy distribution of subjets and the jet shape
Download PDF
  • Zhong-Bo Kang1,2,3,
  • Felix Ringer3,4 &
  • Wouter J. Waalewijn5,6 
  • 502 Accesses

  • 50 Citations

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a framework that describes the energy distribution of subjets of radius r within a jet of radius R. We consider both an inclusive sample of subjets as well as subjets centered around a predetermined axis, from which the jet shape can be obtained. For r ≪ R we factorize the physics at angular scales r and R to resum the logarithms of r/R. For central subjets, we consider both the standard jet axis and the winner-take-all axis, which involve double and single logarithms of r/R, respectively. All relevant one-loop matching coefficients are given, and an inconsistency in some previous results for cone jets is resolved. Our results for the standard jet shape differ from previous calculations at next-to-leading logarithmic order, because we account for the recoil of the standard jet axis due to soft radiation. Numerical results are presented for an inclusive subjet sample for pp → jet + X at next-to-leading order plus leading logarithmic order.

Article PDF

Download to read the full article text

Similar content being viewed by others

The jet shape at NLL′

Article Open access 23 May 2019

Novel subjet observables for jet quenching in heavy-ion collisions

Article Open access 28 June 2018

The first calculation of fractional jets

Article Open access 04 May 2015
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  2. D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].

    Article  ADS  Google Scholar 

  3. L. Dai, C. Kim and A.K. Leibovich, Fragmentation of a Jet with Small Radius, Phys. Rev. D 94 (2016) 114023 [arXiv:1606.07411] [INSPIRE].

    ADS  Google Scholar 

  4. S.D. Ellis, Z. Kunszt and D.E. Soper, Jets at hadron colliders at order α 3 s : A look inside, Phys. Rev. Lett. 69 (1992) 3615 [hep-ph/9208249] [INSPIRE].

  5. M.H. Seymour, Jet shapes in hadron collisions: Higher orders, resummation and hadronization, Nucl. Phys. B 513 (1998) 269 [hep-ph/9707338] [INSPIRE].

  6. H.-n. Li, Z. Li and C.P. Yuan, QCD resummation for jet substructures, Phys. Rev. Lett. 107 (2011) 152001 [arXiv:1107.4535] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Y.-T. Chien and I. Vitev, Jet Shape Resummation Using Soft-Collinear Effective Theory, JHEP 12 (2014) 061 [arXiv:1405.4293] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Procura and I.W. Stewart, Quark Fragmentation within an Identified Jet, Phys. Rev. D 81 (2010) 074009 [Erratum ibid. D 83 (2011) 039902] [arXiv:0911.4980] [INSPIRE].

  9. A. Jain, M. Procura and W.J. Waalewijn, Parton Fragmentation within an Identified Jet at NNLL, JHEP 05 (2011) 035 [arXiv:1101.4953] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. F. Arleo, M. Fontannaz, J.-P. Guillet and C.L. Nguyen, Probing fragmentation functions from same-side hadron-jet momentum correlations in p-p collisions, JHEP 04 (2014) 147 [arXiv:1311.7356] [INSPIRE].

    Article  ADS  Google Scholar 

  11. T. Kaufmann, A. Mukherjee and W. Vogelsang, Hadron Fragmentation Inside Jets in Hadronic Collisions, Phys. Rev. D 92 (2015) 054015 [arXiv:1506.01415] [INSPIRE].

    ADS  Google Scholar 

  12. ATLAS collaboration, Study of Jet Shapes in Inclusive Jet Production in pp Collisions at \( \sqrt{s}=7 \) TeV using the ATLAS Detector, Phys. Rev. D 83 (2011) 052003 [arXiv:1101.0070] [INSPIRE].

  13. CMS collaboration, Shape, Transverse Size and Charged Hadron Multiplicity of Jets in pp Collisions at 7 TeV, JHEP 06 (2012) 160 [arXiv:1204.3170] [INSPIRE].

  14. CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].

  15. ALICE collaboration, Charged jet cross sections and properties in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 91 (2015) 112012 [arXiv:1411.4969] [INSPIRE].

  16. CMS collaboration, Measurement of jet fragmentation into charged particles in pp and PbPb collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, JHEP 10 (2012) 087 [arXiv:1205.5872] [INSPIRE].

  17. CMS collaboration, Measurement of jet fragmentation in PbPb and pp collisions at \( \sqrt{s_{\;N\;N}}=2.76 \) TeV, Phys. Rev. C 90 (2014) 024908 [arXiv:1406.0932] [INSPIRE].

  18. ATLAS collaboration, Jet Fragmentation in p+Pb Collisions, ATLAS-CONF-2015-022 [INSPIRE].

  19. A. Abdesselam et al., Boosted objects: A probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].

  22. D. Adams et al., Towards an Understanding of the Correlations in Jet Substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].

    Article  ADS  Google Scholar 

  29. V. Rentala, N. Vignaroli, H.-n. Li, Z. Li and C.P. Yuan, Discriminating Higgs production mechanisms using jet energy profiles, Phys. Rev. D 88 (2013) 073007 [arXiv:1306.0899] [INSPIRE].

    ADS  Google Scholar 

  30. B.T. Elder, M. Procura, J. Thaler, W.J. Waalewijn and K. Zhou, Generalized Fragmentation Functions for Fractal Jet Observables, JHEP 06 (2017) 085 [arXiv:1704.05456] [INSPIRE].

    Google Scholar 

  31. I. Vitev, S. Wicks and B.-W. Zhang, A theory of jet shapes and cross sections: From hadrons to nuclei, JHEP 11 (2008) 093 [arXiv:0810.2807] [INSPIRE].

    Article  ADS  Google Scholar 

  32. Y.-T. Chien and I. Vitev, Towards the understanding of jet shapes and cross sections in heavy ion collisions using soft-collinear effective theory, JHEP 05 (2016) 023 [arXiv:1509.07257] [INSPIRE].

    Article  ADS  Google Scholar 

  33. N.-B. Chang and G.-Y. Qin, Full jet evolution in quark-gluon plasma and nuclear modification of jet production and jet shape in Pb+Pb collisions at 2.76ATeV at the CERN Large Hadron Collider, Phys. Rev. C 94 (2016) 024902 [arXiv:1603.01920] [INSPIRE].

  34. B. Jager, M. Stratmann and W. Vogelsang, Single inclusive jet production in polarized pp collisions at O(alpha 3 s ), Phys. Rev. D 70 (2004) 034010 [hep-ph/0404057] [INSPIRE].

  35. A. Mukherjee and W. Vogelsang, Jet production in (un)polarized pp collisions: dependence on jet algorithm, Phys. Rev. D 86 (2012) 094009 [arXiv:1209.1785] [INSPIRE].

    ADS  Google Scholar 

  36. Z.-B. Kang, F. Ringer and I. Vitev, The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production, JHEP 10 (2016) 125 [arXiv:1606.06732] [INSPIRE].

    Article  ADS  Google Scholar 

  37. L. Dai, C. Kim and A.K. Leibovich, Fragmentation to a jet in the large z limit, Phys. Rev. D 95 (2017) 074003 [arXiv:1701.05660] [INSPIRE].

    ADS  Google Scholar 

  38. M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Dasgupta, F.A. Dreyer, G.P. Salam and G. Soyez, Inclusive jet spectrum for small-radius jets, JHEP 06 (2016) 057 [arXiv:1602.01110] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Neill, I. Scimemi and W.J. Waalewijn, Jet axes and universal transverse-momentum-dependent fragmentation, JHEP 04 (2017) 020 [arXiv:1612.04817] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e − annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  42. Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].

  43. A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    Article  ADS  Google Scholar 

  44. F. Aversa, P. Chiappetta, M. Greco and J.P. Guillet, QCD Corrections to Parton-Parton Scattering Processes, Nucl. Phys. B 327 (1989) 105 [INSPIRE].

    Article  ADS  Google Scholar 

  45. F. Aversa, M. Greco, P. Chiappetta and J.P. Guillet, Jet Production in Hadronic Collisions to O (α − s 3 ), Z. Phys. C 46 (1990) 253 [INSPIRE].

    Google Scholar 

  46. Z.-B. Kang, F. Ringer and I. Vitev, Jet substructure using semi-inclusive jet functions in SCET, JHEP 11 (2016) 155 [arXiv:1606.07063] [INSPIRE].

    Article  ADS  Google Scholar 

  47. OPAL collaboration, R. Akers et al., QCD studies using a cone based jet finding algorithm for e + e − collisions at LEP, Z. Phys. C 63 (1994) 197 [INSPIRE].

  48. G.P. Salam and G. Soyez, A Practical Seedless Infrared-Safe Cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  50. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

  51. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

  52. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

  53. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  54. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  55. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

  56. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

  57. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg, Germany, 1998-1999, pp. 270-279, (1998), hep-ph/9907280 [INSPIRE].

  58. A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

  59. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  60. M. Procura and W.J. Waalewijn, Fragmentation in Jets: Cone and Threshold Effects, Phys. Rev. D 85 (2012) 114041 [arXiv:1111.6605] [INSPIRE].

    ADS  Google Scholar 

  61. W.J. Waalewijn, Calculating the Charge of a Jet, Phys. Rev. D 86 (2012) 094030 [arXiv:1209.3019] [INSPIRE].

    ADS  Google Scholar 

  62. Y.-T. Chien, Z.-B. Kang, F. Ringer, I. Vitev and H. Xing, Jet fragmentation functions in proton-proton collisions using soft-collinear effective theory, JHEP 05 (2016) 125 [arXiv:1512.06851] [INSPIRE].

    Article  ADS  Google Scholar 

  63. B. Jager, A. Schafer, M. Stratmann and W. Vogelsang, Next-to-leading order QCD corrections to high p T pion production in longitudinally polarized pp collisions, Phys. Rev. D 67 (2003) 054005 [hep-ph/0211007] [INSPIRE].

  64. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

    ADS  Google Scholar 

  65. A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun. 170 (2005) 65 [hep-ph/0408244] [INSPIRE].

  66. D.P. Anderle, F. Ringer and M. Stratmann, Fragmentation Functions at Next-to-Next-to-Leading Order Accuracy, Phys. Rev. D 92 (2015) 114017 [arXiv:1510.05845] [INSPIRE].

    ADS  Google Scholar 

  67. G.T. Bodwin, K.-T. Chao, H.S. Chung, U.-R. Kim, J. Lee and Y.-Q. Ma, Fragmentation contributions to hadroproduction of prompt J/ψ, χ cJ and ψ(2S) states, Phys. Rev. D 93 (2016) 034041 [arXiv:1509.07904] [INSPIRE].

    ADS  Google Scholar 

  68. J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    Article  ADS  Google Scholar 

  69. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].

  71. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J.-y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Soft-Collinear Factorization and Zero-Bin Subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].

    ADS  Google Scholar 

  73. T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].

    Article  ADS  Google Scholar 

  74. Y. Li, D. Neill and H.X. Zhu, An Exponential Regulator for Rapidity Divergences, arXiv:1604.00392 [INSPIRE].

  75. M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

  76. M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].

  77. A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].

    ADS  Google Scholar 

  78. T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet Processes, JHEP 11 (2016) 019 [Erratum ibid. 1705 (2017) 154] [arXiv:1605.02737] [INSPIRE].

  79. T. Kasemets, W.J. Waalewijn and L. Zeune, Calculating Soft Radiation at One Loop, JHEP 03 (2016) 153 [arXiv:1512.00857] [INSPIRE].

    Article  ADS  Google Scholar 

  80. T. Becher and G. Bell, NNLL Resummation for Jet Broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].

  82. P.F. Monni, E. Re and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct Space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].

    Article  ADS  Google Scholar 

  83. M.A. Ebert and F.J. Tackmann, Resummation of Transverse Momentum Distributions in Distribution Space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].

    Article  ADS  Google Scholar 

  84. H.-n. Li, Z. Li and C.P. Yuan, QCD resummation for light-particle jets, Phys. Rev. D 87 (2013) 074025 [arXiv:1206.1344] [INSPIRE].

    ADS  Google Scholar 

  85. R. Bain, Y. Makris and T. Mehen, Transverse Momentum Dependent Fragmenting Jet Functions with Applications to Quarkonium Production, JHEP 11 (2016) 144 [arXiv:1610.06508] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  86. Z.-B. Kang, X. Liu, F. Ringer and H. Xing, The transverse momentum distribution of hadrons within jets, arXiv:1705.08443 [INSPIRE].

  87. Z.-B. Kang, F. Ringer and W.J. Waalewijn, in preparation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, U.S.A.

    Zhong-Bo Kang

  2. Mani L. Bhaumik Institute for Theoretical Physics, University of California, Los Angeles, CA, 90095, U.S.A.

    Zhong-Bo Kang

  3. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.

    Zhong-Bo Kang & Felix Ringer

  4. Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A.

    Felix Ringer

  5. Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands

    Wouter J. Waalewijn

  6. Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Wouter J. Waalewijn

Authors
  1. Zhong-Bo Kang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Felix Ringer
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Wouter J. Waalewijn
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Felix Ringer.

Additional information

ArXiv ePrint: 1705.05375

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, ZB., Ringer, F. & Waalewijn, W.J. The energy distribution of subjets and the jet shape. J. High Energ. Phys. 2017, 64 (2017). https://doi.org/10.1007/JHEP07(2017)064

Download citation

  • Received: 24 May 2017

  • Revised: 19 June 2017

  • Accepted: 27 June 2017

  • Published: 13 July 2017

  • DOI: https://doi.org/10.1007/JHEP07(2017)064

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature