Abstract
We provide a recipe to extract the supersymmetric Casimir energy of theories defined on primary Hopf surfaces directly from the superconformal index. It involves an \( \mathrm{S}\mathrm{L}\left(3,\mathrm{\mathbb{Z}}\right) \) transformation acting on the complex structure moduli of the background geometry. In particular, the known relation between Casimir energy, index and partition function emerges naturally from this framework, allowing rewriting of the latter as a modified elliptic hypergeometric integral. We show this explicitly for \( \mathcal{N}=1 \) SQCD and \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory for all classical gauge groups, and conjecture that it holds more generally. We also use our method to derive an expression for the Casimir energy of the nonlagrangian \( \mathcal{N}=2 \) SCFT with E6 flavour symmetry. Furthermore, we predict an expression for Casimir energy of the \( \mathcal{N}=1 \) SP(2N) theory with SU(8) × U(1) flavour symmetry that is part of a multiple duality network, and for the doubled \( \mathcal{N}=1 \) theory with enhanced E7 flavour symmetry.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].
V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A (2017) in press [arXiv:1608.02952] [INSPIRE].
J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].
C. Römelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].
B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123 [arXiv:1405.5144] [INSPIRE].
B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043 [arXiv:1503.05537] [INSPIRE].
C. Closset and I. Shamir, The N = 1 chiral multiplet on T 2 × S 2 and supersymmetric localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].
A. Arabi Ardehali, J.T. Liu and P. Szepietowski, High-temperature expansion of supersymmetric partition functions, JHEP 07 (2015) 113 [arXiv:1502.07737] [INSPIRE].
N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir energy and the anomaly polynomial, JHEP 09 (2015) 142 [arXiv:1507.08553] [INSPIRE].
P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, The holographic supersymmetric Casimir energy, Phys. Rev. D 95 (2017) 021902 [arXiv:1606.02724] [INSPIRE].
V.P. Spiridonov, On the elliptic beta function, Russ. Math. Surv. 56 (2001) 185.
V.P. Spiridonov, Essays on the theory of elliptic hypergeometric functions, Russ. Math. Surv. 63 (2008) 405 [arXiv:0805.3135].
V.P. Spiridonov, Classical elliptic hypergeometric functions and their applications, Rokko Lect. Math. 18 (2005) 253 [math/0511579].
V.P. Spiridonov, Elliptic hypergeometric functions and Calogero-Sutherland-type models, Theor. Math. Phys. 150 (2007) 266 [Teor. Mat. Fiz. 150 (2007) 311].
F.A. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].
N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].
V.P. Spiridonov, Elliptic beta integrals and solvable models of statistical mechanics, Contemp. Math. 563 (2012) 181 [arXiv:1011.3798] [INSPIRE].
J. Yagi, Quiver gauge theories and integrable lattice models, JHEP 10 (2015) 065 [arXiv:1504.04055] [INSPIRE].
A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].
L. Rastelli and S.S. Razamat, The supersymmetric index in four dimensions, arXiv:1608.02965 [INSPIRE].
V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals and ’t Hooft anomaly matching conditions, JHEP 06 (2012) 016 [arXiv:1203.5677] [INSPIRE].
G. Felder and A. Varchenko, The elliptic gamma function and SL(3, Z) × Z 3, Adv. Math. 156 (2000) 44 [math/9907061].
S.S. Razamat, On a modular property of N = 2 superconformal theories in four dimensions, JHEP 10 (2012) 191 [arXiv:1208.5056] [INSPIRE].
F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4d superconformal indices to 3d partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].
V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities, Commun. Math. Phys. 304 (2011) 797 [arXiv:0910.5944] [INSPIRE].
V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots and vortices, Commun. Math. Phys. 325 (2014) 421 [arXiv:1107.5788] [INSPIRE].
V.P. Spiridonov and G.S. Vartanov, Superconformal indices of N = 4 SYM field theories, Lett. Math. Phys. 100 (2012) 97 [arXiv:1005.4196] [INSPIRE].
A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].
P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].
J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].
A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The superconformal index of the E 6 SCFT, JHEP 08 (2010) 107 [arXiv:1003.4244] [INSPIRE].
V.P. Spiridonov and G.S. Vartanov, Superconformal indices for N = 1 theories with multiple duals, Nucl. Phys. B 824 (2010) 192 [arXiv:0811.1909] [INSPIRE].
T. Dimofte and D. Gaiotto, An E 7 surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].
V.P. Spiridonov, Theta hypergeometric integrals, St. Petersburg Math. J. 15 (2004) 929 [Alg. Analiz 15 (2003) 161] [math/0303205].
V.P. Spiridonov, Modified elliptic gamma functions and 6d superconformal indices, Lett. Math. Phys. 104 (2014) 397 [arXiv:1211.2703] [INSPIRE].
D. Martelli and J. Sparks, The character of the supersymmetric Casimir energy, JHEP 08 (2016) 117 [arXiv:1512.02521] [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The geometry of supersymmetric partition functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].
G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].
A. Hanany and N. Mekareeya, Counting gauge invariant operators in SQCD with classical gauge groups, JHEP 10 (2008) 012 [arXiv:0805.3728] [INSPIRE].
L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP 12 (2014) 031 [arXiv:1407.6061] [INSPIRE].
F. Nieri and S. Pasquetti, Factorisation and holomorphic blocks in 4d, JHEP 11 (2015) 155 [arXiv:1507.00261] [INSPIRE].
A. Arabi Ardehali, High-temperature asymptotics of supersymmetric partition functions, JHEP 07 (2016) 025 [arXiv:1512.03376] [INSPIRE].
J.F. van Diejen and V.P. Spiridonov, Unit circle elliptic beta integrals, Ramanujan J. 10 (2005) 187 [math/0309279].
V.P. Spiridonov and S.O. Warnaar, Inversions of integral operators and elliptic beta integrals on root systems, Adv. Math. 207 (2006) 91 [math/0411044].
G. Lockhart and C. Vafa, Superconformal partition functions and non-perturbative topological strings, arXiv:1210.5909 [INSPIRE].
F. Brünner and V.P. Spiridonov, A duality web of linear quivers, Phys. Lett. B 761 (2016) 261 [arXiv:1605.06991] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1611.03831
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Brünner, F., Regalado, D. & Spiridonov, V.P. Supersymmetric Casimir energy and \( \mathrm{S}\mathrm{L}\left(3,\mathrm{\mathbb{Z}}\right) \) transformations. J. High Energ. Phys. 2017, 41 (2017). https://doi.org/10.1007/JHEP07(2017)041
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2017)041