Advertisement

Hamiltonian analysis of non-relativistic non-BPS Dp-brane

  • J. Klusoň
Open Access
Regular Article - Theoretical Physics

Abstract

We perform Hamiltonian analysis of non-relativistic non-BPS Dp-brane. We find the constraint structure of this theory and determine corresponding equations of motion. We further discuss property of this theory at the tachyon vacuum.

Keywords

D-branes Tachyon Condensation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  5. [5]
    P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    A. Wang, Hořava gravity at a Lifshitz point: a progress report, Int. J. Mod. Phys. D 26 (2017) 1730014 [arXiv:1701.06087] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    E. Bergshoeff et al., Carroll versus Galilei Gravity, JHEP 03 (2017) 165 [arXiv:1701.06156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E.A. Bergshoeff and J. Rosseel, Three-dimensional extended Bargmann supergravity, Phys. Rev. Lett. 116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Hartong, Gauging the Carroll algebra and ultra-relativistic gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan (super)gravity as a non-relativistic limit, Class. Quant. Grav. 32 (2015) 205003 [arXiv:1505.02095] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian gravity and the Bargmann algebra, Class. Quant. Grav. 28 (2011) 105011 [arXiv:1011.1145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan supergravity with torsion and Schrödinger supergravity, JHEP 11 (2015) 180 [arXiv:1509.04527] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127 [hep-th/0009181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10 (2000) 020 [hep-th/0009182] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J. Gomis, K. Kamimura and P.K. Townsend, Non-relativistic superbranes, JHEP 11 (2004) 051 [hep-th/0409219] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: A New soluble sector of AdS 5 × S 5, JHEP 12 (2005) 024 [hep-th/0507036] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Kluson, Non-relativistic non-BPS Dp-brane, Nucl. Phys. B 765 (2007) 185 [hep-th/0610073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP 02 (2017) 049 [arXiv:1611.00026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Gomis and P.K. Townsend, The Galilean superstring, JHEP 02 (2017) 105 [arXiv:1612.02759] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Kluson, Carroll limit of non-BPS Dp-brane, JHEP 05 (2017) 108 [arXiv:1702.08685] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll particles, Class. Quant. Grav. 31 (2014) 205009 [arXiv:1405.2264] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    E. Bergshoeff, J. Gomis and L. Parra, The symmetries of the Carroll superparticle, J. Phys. A 49 (2016) 185402 [arXiv:1503.06083] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  23. [23]
    E.A. Bergshoeff, J. Hartong and J. Rosseel, Torsional Newton-Cartan geometry and the Schrödinger algebra, Class. Quant. Grav. 32 (2015) 135017 [arXiv:1409.5555] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    B. Cardona, J. Gomis and J.M. Pons, Dynamics of Carroll strings, JHEP 07 (2016) 050 [arXiv:1605.05483] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Sen, Supersymmetric world volume action for non-BPS D-branes, JHEP 10 (1999) 008 [hep-th/9909062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras and S. Panda, T duality and actions for non-BPS D-branes, JHEP 05 (2000) 009 [hep-th/0003221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J. Kluson, Proposal for non-BPS D-brane action, Phys. Rev. D 62 (2000) 126003 [hep-th/0004106] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Sen, Fundamental strings in open string theory at the tachyonic vacuum, J. Math. Phys. 42 (2001) 2844 [hep-th/0010240] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    A. Sen, Open and closed strings from unstable D-branes, Phys. Rev. D 68 (2003) 106003 [hep-th/0305011] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    J. Kluson, Note about unstable D-branes with dynamical tension, Phys. Rev. D 94 (2016) 046004 [arXiv:1605.09510] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Kluson, Remark about non-BPS Dp-brane at the tachyon vacuum moving in curved background, Phys. Rev. D 72 (2005) 106005 [hep-th/0504062] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Gomis and F. Passerini, Rotating solutions of non-relativistic string theory, Phys. Lett. B 617 (2005) 182 [hep-th/0411195] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    D. Erkal, D. Kutasov and O. Lunin, Brane-antibrane dynamics from the tachyon DBI action, arXiv:0901.4368 [INSPIRE].
  35. [35]
    D. Kutasov, A geometric interpretation of the open string tachyon, hep-th/0408073 [INSPIRE].
  36. [36]
    D. Kutasov and V. Niarchos, Tachyon effective actions in open string theory, Nucl. Phys. B 666 (2003) 56 [hep-th/0304045] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A. Sen, Geometric tachyon to universal open string tachyon, JHEP 05 (2007) 035 [hep-th/0703157] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    E. Gourgoulhon, 3 + 1 formalism and bases of numerical relativity, gr-qc/0703035 [INSPIRE].
  39. [39]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations