Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Exorcising the Ostrogradsky ghost in coupled systems

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 July 2016
  • Volume 2016, article number 130, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Exorcising the Ostrogradsky ghost in coupled systems
Download PDF
  • Remko Klein1 &
  • Diederik Roest1 
  • 474 Accesses

  • 65 Citations

  • 9 Altmetric

  • 1 Mention

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The Ostrogradsky theorem implies that higher-derivative terms of a single mechanical variable are either trivial or lead to additional, ghost-like degrees of freedom. In this letter we systematically investigate how the introduction of additional variables can remedy this situation. Employing a Lagrangian analysis, we identify conditions on the La-grangian to ensure the existence of primary and secondary constraints that together imply the absence of Ostrogradsky ghosts. We also show the implications of these conditions for the structure of the equations of motion as well as possible redefinitions of the variables. We discuss applications to analogous higher-derivative field theories such as multi-Galileons and beyond Horndeski.

Article PDF

Download to read the full article text

Similar content being viewed by others

Ghost-free theories with arbitrary higher-order time derivatives

Article Open access 25 June 2018

The decoupling limit of multi-gravity: multi-Galileons, dualities and more

Article Open access 07 May 2015

Higher derivative field theories: degeneracy conditions and classes

Article Open access 23 June 2017
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Zumalacárregui and J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 (2014) 064046 [arXiv:1308.4685] [INSPIRE].

  2. J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, Phys. Rev. Lett. 114 (2015) 211101 [arXiv:1404.6495] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Exploring gravitational theories beyond Horndeski, JCAP 02 (2015) 018 [arXiv:1408.1952] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Deffayet, G. Esposito-Farese and D.A. Steer, Counting the degrees of freedom of generalized Galileons, Phys. Rev. D 92 (2015) 084013 [arXiv:1506.01974] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034 [arXiv:1510.06930] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Langlois and K. Noui, Hamiltonian analysis of higher derivative scalar-tensor theories, arXiv:1512.06820 [INSPIRE].

  7. M. Crisostomi, M. Hull, K. Koyama and G. Tasinato, Horndeski: beyond, or not beyond?, JCAP 03 (2016) 038 [arXiv:1601.04658] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Crisostomi, K. Koyama and G. Tasinato, Extended Scalar-Tensor Theories of Gravity, JCAP 04 (2016) 044 [arXiv:1602.03119] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Ben Achour, D. Langlois and K. Noui, Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations, Phys. Rev. D 93 (2016) 124005 [arXiv:1602.08398] [INSPIRE].

    ADS  Google Scholar 

  10. H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, Healthy degenerate theories with higher derivatives, arXiv:1603.09355 [INSPIRE].

  11. M. Ostrogradsky, Memoires sur les equations differentielles relatives au probleme des isoperimetretres, Mem. Acad. St. Petersburg 6 (1850) 385.

    Google Scholar 

  12. R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].

  13. T.-j. Chen, M. Fasiello, E.A. Lim and A.J. Tolley, Higher derivative theories with constraints: Exorcising Ostrogradski’s Ghost, JCAP 02 (2013) 042 [arXiv:1209.0583] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].

    ADS  Google Scholar 

  17. C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].

    ADS  Google Scholar 

  18. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  19. G. Tasinato, Cosmic Acceleration from Abelian Symmetry Breaking, JHEP 04 (2014) 067 [arXiv:1402.6450] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. L. Heisenberg, Generalization of the Proca Action, JCAP 05 (2014) 015 [arXiv:1402.7026] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Hull, K. Koyama and G. Tasinato, Covariantized vector Galileons, Phys. Rev. D 93 (2016) 064012 [arXiv:1510.07029] [INSPIRE].

    ADS  Google Scholar 

  22. E. Allys, P. Peter and Y. Rodriguez, Generalized Proca action for an Abelian vector field, JCAP 02 (2016) 004 [arXiv:1511.03101] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Beltran Jimenez and L. Heisenberg, Derivative self-interactions for a massive vector field, Phys. Lett. B 757 (2016) 405 [arXiv:1602.03410] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, John Wiley and Son, New York U.S.A. (1974).

    MATH  Google Scholar 

  25. H.J. Rothe and K.D. Rothe, Classical and Quantum Dynamics of Constrained Hamiltonian Systems, World Scientific Publishing, Singapore, Singapore (2010).

    MATH  Google Scholar 

  26. X. Gracia and J.M. Pons, Gauge Generators, Dirac’s Conjecture and Degrees of Freedom for Constrained Systems, Annals Phys. 187 (1988) 355 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. J.M. Pons, New Relations Between Hamiltonian and Lagrangian Constraints, J. Phys. A 21 (1988) 2705 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. M. Henneaux, C. Teitelboim and J. Zanelli, Gauge Invariance and Degree of Freedom Count, Nucl. Phys. B 332 (1990) 169 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Díaz, D. Higuita and M. Montesinos, Lagrangian approach to the physical degree of freedom count, J. Math. Phys. 55 (2014) 122901 [arXiv:1406.1156] [INSPIRE].

  30. H. Motohashi and T. Suyama, Third order equations of motion and the Ostrogradsky instability, Phys. Rev. D 91 (2015) 085009 [arXiv:1411.3721] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. G. Gabadadze, K. Hinterbichler, J. Khoury, D. Pirtskhalava and M. Trodden, A Covariant Master Theory for Novel Galilean Invariant Models and Massive Gravity, Phys. Rev. D 86 (2012) 124004 [arXiv:1208.5773] [INSPIRE].

    ADS  Google Scholar 

  32. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  33. A. Padilla, P.M. Saffin and S.-Y. Zhou, Multi-galileons, solitons and Derrick’s theorem, Phys. Rev. D 83 (2011) 045009 [arXiv:1008.0745] [INSPIRE].

    ADS  Google Scholar 

  34. A. Padilla and V. Sivanesan, Covariant multi-galileons and their generalisation, JHEP 04 (2013) 032 [arXiv:1210.4026] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Remko Klein & Diederik Roest

Authors
  1. Remko Klein
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Diederik Roest
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Remko Klein.

Additional information

ArXiv ePrint: 1604.01719

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, R., Roest, D. Exorcising the Ostrogradsky ghost in coupled systems. J. High Energ. Phys. 2016, 130 (2016). https://doi.org/10.1007/JHEP07(2016)130

Download citation

  • Received: 23 May 2016

  • Accepted: 09 July 2016

  • Published: 27 July 2016

  • DOI: https://doi.org/10.1007/JHEP07(2016)130

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Cosmology of Theories beyond the SM
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature