Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Impact of jet veto resummation on slepton searches

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 22 July 2016
  • Volume 2016, article number 119, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Impact of jet veto resummation on slepton searches
Download PDF
  • Frank J. Tackmann1,
  • Wouter J. Waalewijn2,3 &
  • Lisa Zeune3 
  • 341 Accesses

  • 10 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Several searches for new physics at the LHC require a fixed number of signal jets, vetoing events with additional jets from QCD radiation. As the probed scale of new physics gets much larger than the jet-veto scale, such jet vetoes strongly impact the QCD perturbative series, causing nontrivial theoretical uncertainties. We consider slepton pair production with 0 signal jets, for which we perform the resummation of jet-veto logarithms and study its impact. Currently, the experimental exclusion limits take the jet-veto cut into account by extrapolating to the inclusive cross section using parton shower Monte Carlos. Our results indicate that the associated theoretical uncertainties can be large, and when taken into account have a sizeable impact already on present exclusion limits. This is improved by performing the resummation to higher order, which allows us to obtain accurate predictions even for high slepton masses. For the interpretation of the experimental results to benefit from improved theory predictions, it would be useful for the experimental analyses to also provide limits on the unfolded visible 0-jet cross section.

Article PDF

Download to read the full article text

Similar content being viewed by others

Slepton pair production in association with a jet: NLO-QCD corrections and parton-shower effects

Article Open access 06 February 2015

Transverse vetoes with rapidity cutoff in SCET

Article Open access 11 December 2017

Resummation prediction on the jet mass spectrum in one-jet inclusive production at the LHC

Article Open access 01 April 2015

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].

  2. CMS collaboration, Search for direct production of bottom squark pairs, CMS-PAS-SUS-13-018 (2013).

  3. ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [arXiv:1506.08616] [INSPIRE].

  4. ATLAS collaboration, Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2014) 096 [arXiv:1407.0350] [INSPIRE].

  5. ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].

  6. CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

  7. ATLAS collaboration, Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 208 [arXiv:1501.07110] [INSPIRE].

  8. ATLAS collaboration, Search for the electroweak production of supersymmetric particles in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 [arXiv:1509.07152] [INSPIRE].

  9. ATLAS collaboration, Measurement of ZZ production in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, JHEP 03 (2013) 128 [arXiv:1211.6096] [INSPIRE].

  10. CMS collaboration, Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 052011 [arXiv:1511.09375] [INSPIRE].

  11. ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 011802 [arXiv:1209.4625] [INSPIRE].

  12. ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].

  13. CMS collaboration, Monophoton search, CMS-PAS-EXO-12-047 (2012).

  14. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs Production with a Central Jet Veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].

    Article  ADS  Google Scholar 

  15. I.W. Stewart and F.J. Tackmann, Theory Uncertainties for Higgs and Other Searches Using Jet Bins, Phys. Rev. D 85 (2012) 034011 [arXiv:1107.2117] [INSPIRE].

    ADS  Google Scholar 

  16. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

    ADS  Google Scholar 

  17. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Becher and M. Neubert, Factorization and NNLL Resummation for Higgs Production with a Jet Veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].

    ADS  Google Scholar 

  21. A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

    Article  ADS  Google Scholar 

  22. X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev. D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].

    ADS  Google Scholar 

  23. X. Liu and F. Petriello, Reducing theoretical uncertainties for exclusive Higgs-boson plus one-jet production at the LHC, Phys. Rev. D 87 (2013) 094027 [arXiv:1303.4405] [INSPIRE].

    ADS  Google Scholar 

  24. T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at N N LL ′ + N N LO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].

    ADS  Google Scholar 

  26. A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Boughezal, X. Liu, F. Petriello, F.J. Tackmann and J.R. Walsh, Combining Resummed Higgs Predictions Across Jet Bins, Phys. Rev. D 89 (2014) 074044 [arXiv:1312.4535] [INSPIRE].

    ADS  Google Scholar 

  28. S. Gangal, M. Stahlhofen and F.J. Tackmann, Rapidity-Dependent Jet Vetoes, Phys. Rev. D 91 (2015) 054023 [arXiv:1412.4792] [INSPIRE].

    ADS  Google Scholar 

  29. A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N 3 LO+NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].

    Article  ADS  Google Scholar 

  30. D.Y. Shao, C.S. Li and H.T. Li, Resummation Prediction on Higgs and Vector Boson Associated Production with a Jet Veto at the LHC, JHEP 02 (2014) 117 [arXiv:1309.5015] [INSPIRE].

    Article  ADS  Google Scholar 

  31. Y. Li and X. Liu, High precision predictions for exclusive V H production at the LHC, JHEP 06 (2014) 028 [arXiv:1401.2149] [INSPIRE].

    Article  ADS  Google Scholar 

  32. I. Moult and I.W. Stewart, Jet Vetoes interfering with H → W W , JHEP 09 (2014) 129 [arXiv:1405.5534] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P. Jaiswal and T. Okui, Explanation of the W W excess at the LHC by jet-veto resummation, Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].

    ADS  Google Scholar 

  34. T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL + NLO resummation for jet-veto cross sections, Eur. Phys. J. C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y. Wang, C.S. Li and Z.L. Liu, Resummation prediction on gauge boson pair production with a jet veto, Phys. Rev. D 93 (2016) 094020 [arXiv:1504.00509] [INSPIRE].

    ADS  Google Scholar 

  36. M. Papucci, I.-W. Kim, K. Sakurai and A. Weiler, in preparation.

  37. M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].

    Article  ADS  Google Scholar 

  38. W. Beenakker, M. Klasen, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].

  39. B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J. C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].

    Article  ADS  Google Scholar 

  40. B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Revisiting slepton pair production at the Large Hadron Collider, JHEP 01 (2014) 168 [arXiv:1310.2621] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  42. B. Jager, A. von Manteuffel and S. Thier, Slepton pair production in the POWHEG BOX, JHEP 10 (2012) 130 [arXiv:1208.2953] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Krämer et al., Supersymmetry production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1206.2892 [INSPIRE].

  44. A. Broggio, M. Neubert and L. Vernazza, Soft-gluon resummation for slepton-pair production at hadron colliders, JHEP 05 (2012) 151 [arXiv:1111.6624] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Bozzi, B. Fuks and M. Klasen, Threshold Resummation for Slepton-Pair Production at Hadron Colliders, Nucl. Phys. B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].

  46. B. Jäger, A. von Manteuffel and S. Thier, Slepton pair production in association with a jet: NLO-QCD corrections and parton-shower effects, JHEP 02 (2015) 041 [arXiv:1410.3802] [INSPIRE].

    Article  Google Scholar 

  47. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

  48. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

  49. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

  50. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  51. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

  52. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

  53. J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

  58. A. Barr, C. Lester and P. Stephens, m(T2): The Truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

  59. S. Dawson, E. Eichten and C. Quigg, Search for Supersymmetric Particles in Hadron-Hadron Collisions, Phys. Rev. D 31 (1985) 1581 [INSPIRE].

    ADS  Google Scholar 

  60. P. Chiappetta, J. Soffer and P. Taxil, Spin Asymmetries for Scalar Leptons From W and Z Decay in \( P\overline{P} \) Collisions, Phys. Lett. B 162 (1985) 192 [INSPIRE].

    Article  ADS  Google Scholar 

  61. F. del Aguila and L. Ametller, On the detectability of sleptons at large hadron colliders, Phys. Lett. B 261 (1991) 326 [INSPIRE].

    Article  ADS  Google Scholar 

  62. H. Baer, C.-h. Chen, F. Paige and X. Tata, Detecting Sleptons at Hadron Colliders and Supercolliders, Phys. Rev. D 49 (1994) 3283 [hep-ph/9311248] [INSPIRE].

  63. G. Altarelli, R.K. Ellis and G. Martinelli, Large Perturbative Corrections to the Drell-Yan Process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  64. G. Bozzi, B. Fuks and M. Klasen, Slepton production in polarized hadron collisions, Phys. Lett. B 609 (2005) 339 [hep-ph/0411318] [INSPIRE].

  65. M. Bisset, S. Raychaudhuri and P. Roy, Higgs mediated slepton pair production at the large hadron collider, hep-ph/9602430 [INSPIRE].

  66. F. Borzumati and K. Hagiwara, Testing supersymmetry at the LHC through gluon-fusion production of a slepton pair, JHEP 03 (2011) 103 [arXiv:0912.0454] [INSPIRE].

    Article  ADS  Google Scholar 

  67. Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].

    ADS  Google Scholar 

  68. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for alpha s (m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

    ADS  Google Scholar 

  69. A. Jain, M. Procura, B. Shotwell and W.J. Waalewijn, Fragmentation with a Cut on Thrust: Predictions for B-factories, Phys. Rev. D 87 (2013) 074013 [arXiv:1207.4788] [INSPIRE].

    ADS  Google Scholar 

  70. T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].

    ADS  Google Scholar 

  71. D. Kang, C. Lee and I.W. Stewart, Using 1-Jettiness to Measure 2 Jets in DIS 3 Ways, Phys. Rev. D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].

    ADS  Google Scholar 

  72. Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys. Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].

    ADS  Google Scholar 

  73. A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    Article  ADS  Google Scholar 

  74. P. Pietrulewicz, S. Gritschacher, A.H. Hoang, I. Jemos and V. Mateu, Variable Flavor Number Scheme for Final State Jets in Thrust, Phys. Rev. D 90 (2014) 114001 [arXiv:1405.4860] [INSPIRE].

    ADS  Google Scholar 

  75. D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs Transverse Momentum Distribution at NNLL and its Theoretical Errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL ′+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].

    ADS  Google Scholar 

  77. M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Resummation and matching of b-quark mass effects in \( b\overline{b}H \) production, JHEP 11 (2015) 196 [arXiv:1508.03288] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Hornig, Y. Makris and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].

    Article  ADS  Google Scholar 

  79. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

  80. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  81. H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and m T 2, JHEP 12 (2008) 063 [arXiv:0810.5178] [INSPIRE].

    Article  ADS  Google Scholar 

  82. Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the Top Background of the Stop Search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].

    Article  ADS  Google Scholar 

  83. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  84. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].

    Article  ADS  Google Scholar 

  86. J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

    Article  ADS  Google Scholar 

  87. J. Eckel, M.J. Ramsey-Musolf, W. Shepherd and S. Su, Impact of LSP Character on Slepton Reach at the LHC, JHEP 11 (2014) 117 [arXiv:1408.2841] [INSPIRE].

    Article  ADS  Google Scholar 

  88. Y. Gershtein et al., Working Group Report: New Particles, Forces and Dimensions, arXiv:1311.0299 [INSPIRE].

  89. A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].

  90. C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].

  91. A. Djouadi and M. Spira, SUSY-QCD corrections to Higgs boson production at hadron colliders, Phys. Rev. D 62 (2000) 014004 [hep-ph/9912476] [INSPIRE].

  92. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  93. M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014) 054029 [arXiv:1407.3272] [INSPIRE].

    ADS  Google Scholar 

  94. T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP 03 (2016) 168 [arXiv:1602.01829] [INSPIRE].

    Article  ADS  Google Scholar 

  95. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  96. S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

  97. G. Kramer and B. Lampe, Two Jet Cross-Section in e + e − Annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].

  98. T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Theory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607, Hamburg, Germany

    Frank J. Tackmann

  2. ITFA, University of Amsterdam, Science Park 904, 1018 XE, Amsterdam, The Netherlands

    Wouter J. Waalewijn

  3. Theory Group, Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Wouter J. Waalewijn & Lisa Zeune

Authors
  1. Frank J. Tackmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Wouter J. Waalewijn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Lisa Zeune
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lisa Zeune.

Additional information

ArXiv ePrint: 1603.03052

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tackmann, F.J., Waalewijn, W.J. & Zeune, L. Impact of jet veto resummation on slepton searches. J. High Energ. Phys. 2016, 119 (2016). https://doi.org/10.1007/JHEP07(2016)119

Download citation

  • Received: 18 March 2016

  • Revised: 30 May 2016

  • Accepted: 16 July 2016

  • Published: 22 July 2016

  • DOI: https://doi.org/10.1007/JHEP07(2016)119

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
  • Jets
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature