Skip to main content

Viscosity bound violation in holographic solids and the viscoelastic response

A preprint version of the article is available at arXiv.


We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a nonzero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.


  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  2. G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    ADS  Article  Google Scholar 

  3. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    ADS  Article  Google Scholar 

  4. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  6. G. Rupak and T. Schäfer, Shear viscosity of a superfluid Fermi gas in the unitarity limit, Phys. Rev. A 76 (2007) 053607 [arXiv:0707.1520] [INSPIRE].

    ADS  Article  Google Scholar 

  7. H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301 [Erratum ibid. 109 (2012) 139904] [arXiv:1011.2783] [INSPIRE].

  8. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  9. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    ADS  Article  Google Scholar 

  10. S. Cremonini, The Shear Viscosity to Entropy Ratio: A Status Report, Mod. Phys. Lett. B 25 (2011) 1867 [arXiv:1108.0677] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

    ADS  Article  Google Scholar 

  12. S. Jain, N. Kundu, K. Sen, A. Sinha and S.P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].

    ADS  Article  Google Scholar 

  13. R. Critelli, S.I. Finazzo, M. Zaniboni and J. Noronha, Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes, Phys. Rev. D 90 (2014) 066006 [arXiv:1406.6019] [INSPIRE].

    ADS  Google Scholar 

  14. X.-H. Ge, Y. Ling, C. Niu and S.-J. Sin, Thermoelectric conductivities, shear viscosity and stability in an anisotropic linear axion model, Phys. Rev. D 92 (2015) 106005 [arXiv:1412.8346] [INSPIRE].

    ADS  Google Scholar 

  15. D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

  16. M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].

    ADS  Google Scholar 

  17. R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].

    ADS  Google Scholar 

  18. R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

    ADS  Article  Google Scholar 

  19. M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].

    ADS  Article  Google Scholar 

  20. T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    ADS  Article  Google Scholar 

  21. M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].

    ADS  Article  Google Scholar 

  22. H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev. D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].

  23. H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta 70 (1997) 275, hep-ph/9609466 [INSPIRE].

  24. S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].

    ADS  Google Scholar 

  25. A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].

    ADS  Google Scholar 

  27. L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid Holography and Massive Gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].

    ADS  Article  Google Scholar 

  28. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol. 7: Theory of Elasticity, sections 1, 4, 10 and 34, Pergamon Press, Oxford U.K. (1970).

  29. P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, sections 6.4 and 8.4, Cambridge University Press, Cambridge U.K. (1995).

  30. E.M. Lifshitz and L.P. Pitaevskii, Course of Theoretical Physics. Vol. 9: Statistical Physics Part 2, section 90, Pergamon Press, Oxford U.K. (1980).

  31. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

  32. S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. L. Alberte and A. Khmelnitsky, Stability of Massive Gravity Solutions for Holographic Conductivity, Phys. Rev. D 91 (2015) 046006 [arXiv:1411.3027] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. R.S. Lakes, T. Lee, A. Berlse and Y.C. Wang, Extreme damping in composite materials with negative-stiffness inclusions, Nature 410 (2001) 565.

    ADS  Article  Google Scholar 

  38. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. M. Mueller, J. Schmalian and L. Fritz, Graphene: A Nearly Perfect Fluid, Phys. Rev. Lett. 103 (2009) 025301 [arXiv:0903.4178].

    ADS  Article  Google Scholar 

  40. I. Torre, A. Tomadin, A.K. Geim and M. Polini, Nonlocal transport and the hydrodynamic shear viscosity in graphene, Phys. Rev. B 92 (2015) 165433 [arXiv:1508.00363] [INSPIRE].

    ADS  Article  Google Scholar 

  41. I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  42. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  43. M. Baggioli and D.K. Brattan, Drag Phenomena from Holographic Massive Gravity, arXiv:1504.07635 [INSPIRE].

  44. P. Kovtun, Fluctuation bounds on charge and heat diffusion, J. Phys. A 48 (2015) 265002 [arXiv:1407.0690] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54 [arXiv:1405.3651] [INSPIRE].

    ADS  Article  Google Scholar 

  46. A. Amoretti, A. Braggio, N. Magnoli and D. Musso, Bounds on charge and heat diffusivities in momentum dissipating holography, JHEP 07 (2015) 102 [arXiv:1411.6631] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Entropy production, viscosity bounds and bumpy black holes, JHEP 03 (2016) 170 [arXiv:1601.02757] [INSPIRE].

    ADS  Article  Google Scholar 

  48. P. Burikham and N. Poovuttikul, Shear viscosity in holography and effective theory of transport without translational symmetry, arXiv:1601.04624 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Lasma Alberte.

Additional information

ArXiv ePrint: 1601.03384v2

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alberte, L., Baggioli, M. & Pujolàs, O. Viscosity bound violation in holographic solids and the viscoelastic response. J. High Energ. Phys. 2016, 74 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Holography and condensed matter physics (AdS/CMT)
  • Gauge-gravity correspondence
  • Space-Time Symmetries