J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.
38 (1999) 1113 [hep-th/9711200] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.
87 (2001) 081601 [hep-th/0104066] [INSPIRE].
ADS
Article
Google Scholar
P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.
94 (2005) 111601 [hep-th/0405231] [INSPIRE].
ADS
Article
Google Scholar
P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP
10 (2003) 064 [hep-th/0309213] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev.
D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
ADS
Google Scholar
G. Rupak and T. Schäfer, Shear viscosity of a superfluid Fermi gas in the unitarity limit, Phys. Rev.
A 76 (2007) 053607 [arXiv:0707.1520] [INSPIRE].
ADS
Article
Google Scholar
H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett.
106 (2011) 192301 [Erratum ibid.
109 (2012) 139904] [arXiv:1011.2783] [INSPIRE].
M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev.
D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].
ADS
Google Scholar
M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett.
100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].
ADS
Article
Google Scholar
S. Cremonini, The Shear Viscosity to Entropy Ratio: A Status Report, Mod. Phys. Lett.
B 25 (2011) 1867 [arXiv:1108.0677] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett.
108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].
ADS
Article
Google Scholar
S. Jain, N. Kundu, K. Sen, A. Sinha and S.P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP
01 (2015) 005 [arXiv:1406.4874] [INSPIRE].
ADS
Article
Google Scholar
R. Critelli, S.I. Finazzo, M. Zaniboni and J. Noronha, Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes, Phys. Rev.
D 90 (2014) 066006 [arXiv:1406.6019] [INSPIRE].
ADS
Google Scholar
X.-H. Ge, Y. Ling, C. Niu and S.-J. Sin, Thermoelectric conductivities, shear viscosity and stability in an anisotropic linear axion model, Phys. Rev.
D 92 (2015) 106005 [arXiv:1412.8346] [INSPIRE].
ADS
Google Scholar
D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev.
D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
ADS
Google Scholar
R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev.
D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
ADS
Google Scholar
R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP
01 (2015) 039 [arXiv:1411.1062] [INSPIRE].
ADS
Article
Google Scholar
M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett.
114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].
ADS
Article
Google Scholar
T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP
05 (2014) 101 [arXiv:1311.5157] [INSPIRE].
ADS
Article
Google Scholar
M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J.
C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].
ADS
Article
Google Scholar
H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev.
D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].
H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta
70 (1997) 275, hep-ph/9609466 [INSPIRE].
S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev.
D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].
ADS
Google Scholar
A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP
06 (2015) 155 [arXiv:1501.03845] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev.
D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
ADS
Google Scholar
L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid Holography and Massive Gravity, JHEP
02 (2016) 114 [arXiv:1510.09089] [INSPIRE].
ADS
Article
Google Scholar
L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol. 7: Theory of Elasticity, sections 1, 4, 10 and 34, Pergamon Press, Oxford U.K. (1970).
P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, sections 6.4 and 8.4, Cambridge University Press, Cambridge U.K. (1995).
E.M. Lifshitz and L.P. Pitaevskii, Course of Theoretical Physics. Vol. 9: Statistical Physics Part 2, section 90, Pergamon Press, Oxford U.K. (1980).
G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II. Sound waves, JHEP
12 (2002) 054 [hep-th/0210220] [INSPIRE].
S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev.
D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].
ADS
MathSciNet
Google Scholar
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.
26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP
04 (2008) 100 [arXiv:0712.2451] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Alberte and A. Khmelnitsky, Stability of Massive Gravity Solutions for Holographic Conductivity, Phys. Rev.
D 91 (2015) 046006 [arXiv:1411.3027] [INSPIRE].
ADS
MathSciNet
Google Scholar
D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP
09 (2002) 042 [hep-th/0205051] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R.S. Lakes, T. Lee, A. Berlse and Y.C. Wang, Extreme damping in composite materials with negative-stiffness inclusions, Nature
410 (2001) 565.
ADS
Article
Google Scholar
G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP
09 (2002) 043 [hep-th/0205052] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Mueller, J. Schmalian and L. Fritz, Graphene: A Nearly Perfect Fluid, Phys. Rev. Lett.
103 (2009) 025301 [arXiv:0903.4178].
ADS
Article
Google Scholar
I. Torre, A. Tomadin, A.K. Geim and M. Polini, Nonlocal transport and the hydrodynamic shear viscosity in graphene, Phys. Rev.
B 92 (2015) 165433 [arXiv:1508.00363] [INSPIRE].
ADS
Article
Google Scholar
I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys.
8 (2005) 73 [hep-th/0404176] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.
217 (2001) 595 [hep-th/0002230] [INSPIRE].
ADS
Article
MATH
Google Scholar
M. Baggioli and D.K. Brattan, Drag Phenomena from Holographic Massive Gravity, arXiv:1504.07635 [INSPIRE].
P. Kovtun, Fluctuation bounds on charge and heat diffusion, J. Phys.
A 48 (2015) 265002 [arXiv:1407.0690] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys.
11 (2015) 54 [arXiv:1405.3651] [INSPIRE].
ADS
Article
Google Scholar
A. Amoretti, A. Braggio, N. Magnoli and D. Musso, Bounds on charge and heat diffusivities in momentum dissipating holography, JHEP
07 (2015) 102 [arXiv:1411.6631] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Entropy production, viscosity bounds and bumpy black holes, JHEP
03 (2016) 170 [arXiv:1601.02757] [INSPIRE].
ADS
Article
Google Scholar
P. Burikham and N. Poovuttikul, Shear viscosity in holography and effective theory of transport without translational symmetry, arXiv:1601.04624 [INSPIRE].