Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Pseudoscalar top-Higgs coupling: exploration of CP-odd observables to resolve the sign ambiguity

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 12 July 2016
  • Volume 2016, article number 56, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Pseudoscalar top-Higgs coupling: exploration of CP-odd observables to resolve the sign ambiguity
Download PDF
  • Nicolas Mileo1,
  • Ken Kiers2,
  • Alejandro Szynkman1,
  • Daniel Crane2 &
  • …
  • Ethan Gegner2 
  • 310 Accesses

  • 25 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a collection of CP-odd observables for the process \( pp\to t\left(\to b{\ell}^{+}{\nu}_{\ell}\right)\overline{t}\left(\to \overline{b}{\ell}^{-}{\overline{\nu}}_{\ell}\right) \) H that are linearly dependent on the scalar (k t ) and pseudoscalar \( \left({\tilde{k}}_t\right) \) top-Higgs coupling and hence sensitive to the corresponding relative sign. The proposed observables are based on triple product (TP) correlations that we extract from the expression for the differential cross section in terms of the spin vectors of the top and antitop quarks. In order to explore other possibilities, we progressively modify these TPs, first by combining them, and then by replacing the spin vectors by the lepton momenta or the t and \( \overline{t} \) momenta by their visible parts. We generate Monte Carlo data sets for several benchmark scenarios, including the Standard Model \( \left({k}_t = 1,\ {\tilde{k}}_t = 0\right) \) and two scenarios with mixed CP properties \( \left({k}_t = 1,\ {\tilde{k}}_t=\pm 1\right) \). Assuming an integrated luminosity that is consistent with that envisioned for the High Luminosity Large Hadron Collider, using Monte Carlo-truth and taking into account only statistical uncertainties, we find that the most promising observable can disentangle the “CP-mixed” scenarios with an effective separation of ∼ 19σ. In the case of observables that do not require the reconstruction of the t and t momenta, the power of discrimination is up to ∼ 13σ for the same number of events. We also show that the most promising observables can still disentangle the CP-mixed scenarios when the number of events is reduced to values consistent with expectations for the Large Hadron Collider in the near term.

Article PDF

Download to read the full article text

Similar content being viewed by others

Search for top-philic heavy resonances in pp collisions at $$\sqrt{s}=13$$   $$\text {TeV}$$ with the ATLAS detector

Article Open access 15 February 2024

ATLAS Collaboration

Search for supersymmetry in a final state containing two photons and missing transverse momentum in $$\varvec{\sqrt{s}}$$  = 13 TeV $$\varvec{pp}$$ collisions at the LHC using the ATLAS detector

Article Open access 24 September 2016

M. Aaboud, G. Aad, … ATLAS Collaboration

FCC Physics Opportunities

Article Open access 05 June 2019

A. Abada, M. Abbrescia, … The FCC Collaboration

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7+8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs Precision (Higgcision) Era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].

    Article  ADS  Google Scholar 

  7. ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].

  8. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is There Room for CP-violation in the Top-Higgs Sector?, arXiv:1603.03049 [INSPIRE].

  9. R. Harnik, A. Martin, T. Okui, R. Primulando and F. Yu, Measuring CP-violation in h→τ + τ − at colliders, Phys. Rev. D 88 (2013) 076009 [arXiv:1308.1094] [INSPIRE].

    ADS  Google Scholar 

  10. M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].

    ADS  Google Scholar 

  11. F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].

    Article  ADS  Google Scholar 

  12. F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157] [INSPIRE].

    ADS  Google Scholar 

  13. M.R. Buckley and D. Goncalves, Boosting the Direct CP Measurement of the Higgs-Top Coupling, Phys. Rev. Lett. 116 (2016) 091801 [arXiv:1507.07926] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Li, H.-R. Wang and S.-h. Zhu, Probing CP-violating htt coupling in e + e − → hγ, Phys. Rev. D 93 (2016) 055038 [arXiv:1506.06453] [INSPIRE].

    ADS  Google Scholar 

  15. Y. Chen, D. Stolarski and R. Vega-Morales, Golden probe of the top Yukuwa coupling, Phys. Rev. D 92 (2015) 053003 [arXiv:1505.01168] [INSPIRE].

    ADS  Google Scholar 

  16. S. Khatibi and M. Mohammadi Najafabadi, Exploring the Anomalous Higgs-top Couplings, Phys. Rev. D 90 (2014) 074014 [arXiv:1409.6553] [INSPIRE].

    ADS  Google Scholar 

  17. F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Kobakhidze, L. Wu and J. Yue, Anomalous Top-Higgs Couplings and Top Polarisation in Single Top and Higgs Associated Production at the LHC, JHEP 10 (2014) 100 [arXiv:1406.1961] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Kobakhidze, L. Wu and J. Yue, Electroweak Baryogenesis with Anomalous Higgs Couplings, JHEP 04 (2016) 011 [arXiv:1512.08922] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner and S.D. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett. 100 (2008) 051801 [arXiv:0707.2878] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Hagiwara, K. Ma and H. Yokoya, Probing CP-violation in e + e − production of the Higgs boson and toponia, JHEP 06 (2016) 048 [arXiv:1602.00684] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.F. Gunion and X.-G. He, Determining the CP nature of a neutral Higgs boson at the LHC, Phys. Rev. Lett. 76 (1996) 4468 [hep-ph/9602226] [INSPIRE].

  23. J.F. Gunion, B. Grzadkowski and X.-G. He, Determining the tt and ZZ couplings of a neutral Higgs boson of arbitrary CP nature at the NLC, Phys. Rev. Lett. 77 (1996) 5172 [hep-ph/9605326] [INSPIRE].

  24. J.F. Gunion and J. Pliszka, Determining the relative size of the CP even and CP odd Higgs boson couplings to a fermion at the LHC, Phys. Lett. B 444 (1998) 136 [hep-ph/9809306] [INSPIRE].

  25. X.-G. He, G.-N. Li and Y.-J. Zheng, Probing Higgs boson CP Properties with \( t\overline{t}H \) at the LHC and the 100 TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1550156 [arXiv:1501.00012] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Mahlon and S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders, Phys. Rev. D 53 (1996) 4886 [hep-ph/9512264] [INSPIRE].

  27. G. Mahlon and S.J. Parke, Maximizing spin correlations in top quark pair production at the Tevatron, Phys. Lett. B 411 (1997) 173 [hep-ph/9706304] [INSPIRE].

  28. G. Mahlon and S.J. Parke, Spin Correlation Effects in Top Quark Pair Production at the LHC, Phys. Rev. D 81 (2010) 074024 [arXiv:1001.3422] [INSPIRE].

    ADS  Google Scholar 

  29. D. Atwood, A. Aeppli and A. Soni, Extracting anomalous gluon-top-quark effective couplings at the supercolliders, Phys. Rev. Lett. 69 (1992) 2754 [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Biswas, R. Frederix, E. Gabrielli and B. Mele, Enhancing the \( t\overline{t}H \) signal through top-quark spin polarization effects at the LHC, JHEP 07 (2014) 020 [arXiv:1403.1790] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-Top Couplings in Associated Production, JHEP 04 (2014) 004 [arXiv:1312.5736] [INSPIRE].

    Article  ADS  Google Scholar 

  32. O. Antipin and G. Valencia, T-odd correlations from CP-violating anomalous top-quark couplings revisited, Phys. Rev. D 79 (2009) 013013 [arXiv:0807.1295] [INSPIRE].

    ADS  Google Scholar 

  33. G. Valencia, CP violation in top-quark pair production and decay, PoS(HQL 2012) 050 [arXiv:1301.0962] [INSPIRE].

  34. A. Hayreter and G. Valencia, Constraints on anomalous color dipole operators from Higgs boson production at the LHC, Phys. Rev. D 88 (2013) 034033 [arXiv:1304.6976] [INSPIRE].

    ADS  Google Scholar 

  35. T. Arens and L.M. Sehgal, Energy correlation and asymmetry of secondary leptons in \( {e}^{+}{e}^{-}\to t\overline{t} \), Phys. Rev. D 50 (1994) 4372 [INSPIRE].

    ADS  Google Scholar 

  36. S. Kawasaki, T. Shirafuji and S.Y. Tsai, Productions and decays of short-lived particles in e + e − colliding beam experiments, Prog. Theor. Phys. 49 (1973) 1656 [INSPIRE].

    Article  ADS  Google Scholar 

  37. P. Saha, K. Kiers, B. Bhattacharya, D. London, A. Szynkman and J. Melendez, Measuring CP-Violating Observables in Rare Top Decays at the LHC, Phys. Rev. D 93 (2016) 054044 [arXiv:1510.00204] [INSPIRE].

    ADS  Google Scholar 

  38. P. Saha, K. Kiers, D. London and A. Szynkman, Detecting New Physics in Rare Top Decays at the LHC, Phys. Rev. D 90 (2014) 094016 [arXiv:1407.1725] [INSPIRE].

    ADS  Google Scholar 

  39. K. Kiers, P. Saha, A. Szynkman, D. London, S. Judge and J. Melendez, Search for New Physics in Rare Top Decays: \( t\overline{t} \) Spin Correlations and Other Observables, Phys. Rev. D 90 (2014) 094015 [arXiv:1407.1724] [INSPIRE].

    ADS  Google Scholar 

  40. K. Kiers, T. Knighton, D. London, M. Russell, A. Szynkman and K. Webster, Using \( t\to b\overline{b}c \) to Search for New Physics, Phys. Rev. D 84 (2011) 074018 [arXiv:1107.0754] [INSPIRE].

    ADS  Google Scholar 

  41. R. Kleiss and W.J. Stirling, Spinor Techniques for Calculating \( p\overline{p} \) → W ± /Z 0 + J ets, Nucl. Phys. B 262 (1985) 235 [INSPIRE].

    Article  ADS  Google Scholar 

  42. M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    Article  ADS  Google Scholar 

  43. H.W. Fearing and S. Scherer, Extension of the chiral perturbation theory meson Lagrangian to order p 6, Phys. Rev. D 53 (1996) 315 [hep-ph/9408346] [INSPIRE].

  44. W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [INSPIRE].

  45. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Next-to-leading order qcd corrections to \( pp\to t\overline{t}h \) at the CERN Large Hadron Collider, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].

  47. W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO QCD corrections to \( t\overline{t}H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].

  48. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, CERN-2011-002 [arXiv:1101.0593] [INSPIRE].

  49. L. Sonnenschein, Analytical solution of ttbar dilepton equations, Phys. Rev. D 73 (2006) 054015 [Erratum ibid. D 78 (2008) 079902] [hep-ph/0603011] [INSPIRE].

  50. D0 collaboration, B. Abbott et al., Measurement of the top quark mass using dilepton events, Phys. Rev. Lett. 80 (1998) 2063 [hep-ex/9706014] [INSPIRE].

  51. ATLAS collaboration, Measurements of spin correlation in top-antitop quark events from proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, ATLAS-CONF-2013-101 (2013).

  52. ATLAS collaboration, Measurement of the charge asymmetry in dileptonic decays of top quark pairs in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 05 (2015) 061 [arXiv:1501.07383] [INSPIRE].

  53. CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 542 [arXiv:1505.04480] [INSPIRE].

  54. CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].

  55. S.P. Amor dos Santos et al., Angular distributions in \( t\overline{t}H\left(H\to b\overline{b}\right) \) reconstructed events at the LHC, Phys. Rev. D 92 (2015) 034021 [arXiv:1503.07787] [INSPIRE].

    ADS  Google Scholar 

  56. K. Rehermann and B. Tweedie, Efficient Identification of Boosted Semileptonic Top Quarks at the LHC, JHEP 03 (2011) 059 [arXiv:1007.2221] [INSPIRE].

    Article  ADS  Google Scholar 

  57. ATLAS collaboration, Search for heavy particles decaying to pairs of highly-boosted top quarks using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-014 (2016).

  58. CMS collaboration, Search for tt resonances in boosted semileptonic final states in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-15-002 (2016).

  59. CMS collaboration, Search for ttH production in multilepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-15-008 (2016).

  60. ATLAS collaboration, Search for four-top-quark production in final states with one charged lepton and multiple jets using 3.2 fb −1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-020 (2016).

  61. H.-L. Li, P.-C. Lu, Z.-G. Si and Y. Wang, Associated Production of Higgs Boson and tt at LHC, Chin. Phys. C 40 (2016) 063102 [arXiv:1508.06416] [INSPIRE].

    Article  ADS  Google Scholar 

  62. ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into bb in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 349 [arXiv:1503.05066] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. IFLP, CONICET — Dpto. de Física, Universidad Nacional de La Plata, C.C. 67, 1900, La Plata, Argentina

    Nicolas Mileo & Alejandro Szynkman

  2. Physics and Engineering Department, Taylor University, 236 West Reade Ave., Upland, IN, 46989, U.S.A.

    Ken Kiers, Daniel Crane & Ethan Gegner

Authors
  1. Nicolas Mileo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ken Kiers
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alejandro Szynkman
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Daniel Crane
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Ethan Gegner
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Nicolas Mileo.

Additional information

ArXiv ePrint: 1603.03632

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mileo, N., Kiers, K., Szynkman, A. et al. Pseudoscalar top-Higgs coupling: exploration of CP-odd observables to resolve the sign ambiguity. J. High Energ. Phys. 2016, 56 (2016). https://doi.org/10.1007/JHEP07(2016)056

Download citation

  • Received: 18 March 2016

  • Revised: 06 May 2016

  • Accepted: 02 July 2016

  • Published: 12 July 2016

  • DOI: https://doi.org/10.1007/JHEP07(2016)056

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • CP violation
  • Higgs Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2024 Springer Nature