Non-Abelian string breaking phenomena with matrix product states

Abstract

Using matrix product states, we explore numerically the phenomenology of string breaking in a non-Abelian lattice gauge theory, namely 1+1 dimensional SU(2). The technique allows us to study the static potential between external heavy charges, as traditionally explored by Monte Carlo simulations, but also to simulate the real-time dynamics of both static and dynamical fermions, as the latter are fully included in the formalism. We propose a number of observables that are sensitive to the presence or breaking of the flux string, and use them to detect and characterize the phenomenon in each of these setups.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74 (2011) 014001 [arXiv:1005.4814] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    G.S. Bali and K. Schilling, Static quark - anti-quark potential: Scaling behavior and finite size effects in SU(3) lattice gauge theory, Phys. Rev. D 46 (1992) 2636 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    O. Philipsen and H. Wittig, String breaking in nonAbelian gauge theories with fundamental matter fields, Phys. Rev. Lett. 81 (1998) 4056 [Erratum ibid. 83 (1999) 2684] [hep-lat/9807020] [INSPIRE].

  6. [6]

    ALPHA collaboration, F. Knechtli and R. Sommer, String breaking in SU(2) gauge theory with scalar matter fields, Phys. Lett. B 440 (1998) 345 [hep-lat/9807022] [INSPIRE].

  7. [7]

    M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, String breaking and monopoles: A case study in the 3D Abelian Higgs model, Phys. Lett. B 547 (2002) 269 [hep-lat/0207020] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  8. [8]

    SESAM collaboration, G.S. Bali, H. Neff, T. Duessel, T. Lippert and K. Schilling, Observation of string breaking in QCD, Phys. Rev. D 71 (2005) 114513 [hep-lat/0505012] [INSPIRE].

  9. [9]

    M. Pepe and U.J. Wiese, From Decay to Complete Breaking: Pulling the Strings in SU(2) Yang-Mills Theory, Phys. Rev. Lett. 102 (2009) 191601 [arXiv:0901.2510] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94 (2005) 170201 [cond-mat/0408370] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    F. Hebenstreit, J. Berges and D. Gelfand, Simulating fermion production in 1 + 1 dimensional QED, Phys. Rev. D 87 (2013) 105006 [arXiv:1302.5537] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    F. Hebenstreit, J. Berges and D. Gelfand, Real-time dynamics of string breaking, Phys. Rev. Lett. 111 (2013) 201601 [arXiv:1307.4619] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    T. Byrnes, P. Sriganesh, R.J. Bursill and C.J. Hamer, Density matrix renormalization group approach to the massive Schwinger model, Phys. Rev. D 66 (2002) 013002 [hep-lat/0202014] [INSPIRE].

    ADS  MATH  Google Scholar 

  14. [14]

    M.C. Bañuls, K. Cichy, K. Jansen and J.I. Cirac, The mass spectrum of the Schwinger model with Matrix Product States, JHEP 11 (2013) 158 [arXiv:1305.3765] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    M.C. Bañuls, K. Cichy, J.I. Cirac, K. Jansen and H. Saito, Matrix Product States for Lattice Field Theories, PoS(LATTICE 2013)332 [arXiv:1310.4118] [INSPIRE].

  16. [16]

    B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde and F. Verstraete, Matrix product states for gauge field theories, Phys. Rev. Lett. 113 (2014) 091601 [arXiv:1312.6654] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    E. Rico, T. Pichler, M. Dalmonte, P. Zoller and S. Montangero, Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation, Phys. Rev. Lett. 112 (2014) 201601 [arXiv:1312.3127] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    L. Tagliacozzo, A. Celi, A. Zamora and M. Lewenstein, Optical Abelian Lattice Gauge Theories, Annals Phys. 330 (2013) 160 [arXiv:1205.0496] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    L. Tagliacozzo, A. Celi and M. Lewenstein, Tensor Networks for Lattice Gauge Theories with continuous groups, Phys. Rev. X 4 (2014) 041024 [arXiv:1405.4811] [INSPIRE].

    Article  Google Scholar 

  20. [20]

    P. Silvi, E. Rico, T. Calarco and S. Montangero, Lattice Gauge Tensor Networks, New J. Phys. 16 (2014) 103015 [arXiv:1404.7439] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    K. Van Acoleyen, B. Buyens, J. Haegeman and F. Verstraete, Matrix product states for Hamiltonian lattice gauge theories, PoS(LATTICE2014)308 [arXiv:1411.0020] [INSPIRE].

  22. [22]

    H. Saito, M.C. Bañuls, K. Cichy, J.I. Cirac and K. Jansen, The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States, PoS(LATTICE2014)302 [arXiv:1412.0596] [INSPIRE].

  23. [23]

    M.C. Bañuls, K. Cichy, J.I. Cirac, K. Jansen and H. Saito, Thermal evolution of the Schwinger model with Matrix Product Operators, arXiv:1505.00279 [INSPIRE].

  24. [24]

    L. Tagliacozzo and G. Vidal, Entanglement renormalization and gauge symmetry, Phys. Rev. B 83 (2011) 115127 [arXiv:1007.4145] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    G. Vidal, Efficient Classical Simulation of Slightly Entangled Quantum Computations, Phys. Rev. Lett. 91 (2003) 147902 [quant-ph/0301063].

    ADS  Article  Google Scholar 

  26. [26]

    F. Verstraete, V. Murg and J. Cirac, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys. 57 (2008) 143 [arXiv:0907.2796].

    ADS  Article  Google Scholar 

  27. [27]

    A.J. Daley, C. Kollath, U. Schollwöck and G. Vidal, Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech. (2004) P04005 [cond-mat/0403313].

  28. [28]

    J. Ignacio Cirac, P. Maraner and J.K. Pachos, Cold atom simulation of interacting relativistic quantum field theories, Phys. Rev. Lett. 105 (2010) 190403 [arXiv:1006.2975] [INSPIRE].

    Article  Google Scholar 

  29. [29]

    E. Zohar and B. Reznik, Confinement and lattice QED electric flux-tubes simulated with ultracold atoms, Phys. Rev. Lett. 107 (2011) 275301 [arXiv:1108.1562] [INSPIRE].

    Article  Google Scholar 

  30. [30]

    E. Zohar, J.I. Cirac and B. Reznik, Simulating Compact Quantum Electrodynamics with ultracold atoms: Probing confinement and nonperturbative effects, Phys. Rev. Lett. 109 (2012) 125302 [arXiv:1204.6574] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    D. Banerjee et al., Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench, Phys. Rev. Lett. 109 (2012) 175302 [arXiv:1205.6366] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    D. Banerjee et al., Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories, Phys. Rev. Lett. 110 (2013) 125303 [arXiv:1211.2242] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    P. Hauke, D. Marcos, M. Dalmonte and P. Zoller, Quantum simulation of a lattice Schwinger model in a chain of trapped ions, Phys. Rev. X 3 (2013) 041018 [arXiv:1306.2162] [INSPIRE].

    Article  Google Scholar 

  34. [34]

    K. Stannigel et al., Constrained dynamics via the Zeno effect in quantum simulation: Implementing non-Abelian lattice gauge theories with cold atoms, Phys. Rev. Lett. 112 (2014) 120406 [arXiv:1308.0528] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    L. Tagliacozzo, A. Celi, P. Orland and M. Lewenstein, Simulations of non-Abelian gauge theories with optical lattices, Nature Commun. 4 (2013) 2615 [arXiv:1211.2704] [INSPIRE].

    Article  Google Scholar 

  36. [36]

    U.-J. Wiese, Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories, Annalen Phys. 525 (2013) 777 [arXiv:1305.1602] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    E. Zohar, J.I. Cirac and B. Reznik, Quantum simulations of gauge theories with ultracold atoms: local gauge invariance from angular momentum conservation, Phys. Rev. A 88 (2013) 023617 [arXiv:1303.5040] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    E. Zohar, J.I. Cirac and B. Reznik, Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory, Phys. Rev. Lett. 110 (2013) 125304 [arXiv:1211.2241] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    E. Zohar and B. Reznik, Topological Wilson-loop area law manifested using a superposition of loops, New J. Phys. 15 (2013) 043041 [arXiv:1208.1012] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    E. Zohar, J.I. Cirac and B. Reznik, Simulating (2+1)-Dimensional Lattice QED with Dynamical Matter Using Ultracold Atoms, Phys. Rev. Lett. 110 (2013) 055302 [arXiv:1208.4299] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    A. Kosior and K. Sacha, Simulation of non-Abelian lattice gauge theories with a single component atomic gas, arXiv:1403.1221 [INSPIRE].

  42. [42]

    S. Kühn, J.I. Cirac and M.-C. Bañuls, Quantum simulation of the Schwinger model: A study of feasibility, Phys. Rev. A 90 (2014) 042305 [arXiv:1407.4995] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    D. Marcos et al., Two-dimensional Lattice Gauge Theories with Superconducting Quantum Circuits, Annals Phys. 351 (2014) 634 [arXiv:1407.6066] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    U.-J. Wiese, Towards Quantum Simulating QCD, Nucl. Phys. A 931 (2014) 246 [arXiv:1409.7414] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    A. Mezzacapo, E. Rico, C. Sabín, I.L. Egusquiza, L. Lamata and E. Solano, Non-Abelian Lattice Gauge Theories in Superconducting Circuits, arXiv:1505.04720 [INSPIRE].

  46. [46]

    S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo, S. Pascazio and F.V. Pepe, Discrete Abelian Gauge Theories for Quantum Simulations of QED, J. Phys. A 48 (2015) 30FT01 [arXiv:1503.04340] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  47. [47]

    E. Zohar, J.I. Cirac and B. Reznik, Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices, arXiv:1503.02312 [INSPIRE].

  48. [48]

    E. Zohar and M. Burrello, Formulation of lattice gauge theories for quantum simulations, Phys. Rev. D 91 (2015) 054506 [arXiv:1409.3085] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. [49]

    J.B. Kogut and L. Susskind, Hamiltonian Formulation of Wilsons Lattice Gauge Theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    D. Perez-Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Matrix product state representations, Quant. Inf. Comput. 7 (2007) 401 [quant-ph/0608197].

    MathSciNet  MATH  Google Scholar 

  51. [51]

    U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326 (2011) 96 [arXiv:1008.3477].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. [52]

    F. Verstraete, J.J. García-Ripoll and J.I. Cirac, Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems, Phys. Rev. Lett. 93 (2004) 207204.

    ADS  Article  Google Scholar 

  53. [53]

    H.J. Rothe, Lattice gauge theories: an introduction, World Scientific, Lect. Notes Phys. 82 (2006).

  54. [54]

    C. Michael, Hadronic forces from the lattice, Nucl. Phys. Proc. Suppl. 26 (1992) 417 [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    F. Verstraete, D. Porras and J.I. Cirac, Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective, Phys. Rev. Lett. 93 (2004) 227205 [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69 (1992) 2863 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066 [INSPIRE].

  58. [58]

    T. Pichler, M. Dalmonte, E. Rico, P. Zoller and S. Montangero, Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks, arXiv:1505.04440 [INSPIRE].

  59. [59]

    P.J. Steinhardt, SU(2) Flavor Schwinger Model on the Lattice, Phys. Rev. D 16 (1977) 1782 [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Kühn.

Additional information

ArXiv ePrint: 1505.04441

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kühn, S., Zohar, E., Cirac, J.I. et al. Non-Abelian string breaking phenomena with matrix product states. J. High Energ. Phys. 2015, 130 (2015). https://doi.org/10.1007/JHEP07(2015)130

Download citation

Keywords

  • Field Theories in Lower Dimensions
  • Lattice Gauge Field Theories